Abstract

We present an electrically pumped single-photon emitter in the visible spectral range, working up to 80 K, realized using a self-assembled single InP quantum dot. We confirm that the electroluminescense is emitted from a single quantum dot by performing second-order autocorrelation measurements and show that the deviation from perfect single-photon emission is entirely related to detector limitations and background signal. Emission from both neutral and charged exciton complexes was observed with their relative intensites depending on the injection current and temperature.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
    [CrossRef]
  2. P. Michler,  et al., "Quantum correlation between photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
    [CrossRef]
  3. K. Sebald,  et al., "Single-photon emission of CdSe quantum dots at temperatures up to 200 K," Appl. Phys. Lett. 81, 2920-2922 (2002).
    [CrossRef]
  4. S. Kako,  et al., "A gallium nitride single-photon source operating at 200 K," Nat. Mater. 5, 887-892 (2006).
    [CrossRef]
  5. L. Fleury,  et al., "Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature," Phys. Rev. Lett. 84, 1148-1151 (2000).
    [CrossRef]
  6. T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
    [CrossRef]
  7. C. Kurtsiefer,  et al., "Stable Solid-State Source of Single Photons," Phys. Rev. Lett. 85, 290-293 (2000).
    [CrossRef]
  8. S. Strauf,  et al., "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
    [CrossRef]
  9. R. Ro?bach,  et al., "Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity," Appl. Phys. Lett.  92, 071105-1-071105-3 (2008).
  10. Z. Yuan,  et al., "Electrically Driven Single-Photon Source," Science 295, 102-105 (2002).
    [CrossRef]
  11. A. J. Bennett,  et al., "Microcavity single-photon-emitting diode," Appl. Phys. Lett.  86, 181102-1-181102-3 (2005).
  12. J. I. Gonzalez,  et al., "Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature," Phys. Rev. Lett.  93, 147402-1-147402-4 (2004).
  13. U. Hakanson, et al., "Nano-aperture fabrication for single quantum dot spectroscopy," Nanotechnology 14, 675-679 (2003).
  14. G. J. Beirne,  et al., "Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots," Phys. Rev. B.  75, 195302-1-195302-7 (2007).
  15. J. J. Finley,  et al., "Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot," Phys. Rev. B.  63, 161305-1-161305-4 (2001).
  16. M. Reischle,  et al., "Influence of the exciton dark state on the optical and quantum optical properties of single quantum dots." Submitted for publication.
  17. M. B. Ward,  et al., "Electrically driven telecommunication wavelength single-photon source," Appl. Phys. Lett.  90, 63512-1-63512-3 (2007).
  18. M. Pelton,  et al., "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett.  89, 233602-1-233602-4 (2002).
  19. R. Brouri,  et al., "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett. 25, 1294-1296 (2000).
    [CrossRef]
  20. D. J. P. Ellis,  et al., "Electrically addressing a single self-assembled quantum dot," Appl. Phys. Lett.  88, 133509-1-133509-3 (2006).
  21. A. Lochmann,  et al., "Electrically driven quantum dot single photon source," Phys. Status Solidi C 4, 547-550 (2007).
    [CrossRef]

2007

S. Strauf,  et al., "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

A. Lochmann,  et al., "Electrically driven quantum dot single photon source," Phys. Status Solidi C 4, 547-550 (2007).
[CrossRef]

2006

S. Kako,  et al., "A gallium nitride single-photon source operating at 200 K," Nat. Mater. 5, 887-892 (2006).
[CrossRef]

2005

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

2004

T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
[CrossRef]

2002

Z. Yuan,  et al., "Electrically Driven Single-Photon Source," Science 295, 102-105 (2002).
[CrossRef]

K. Sebald,  et al., "Single-photon emission of CdSe quantum dots at temperatures up to 200 K," Appl. Phys. Lett. 81, 2920-2922 (2002).
[CrossRef]

2000

R. Brouri,  et al., "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett. 25, 1294-1296 (2000).
[CrossRef]

C. Kurtsiefer,  et al., "Stable Solid-State Source of Single Photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef]

P. Michler,  et al., "Quantum correlation between photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef]

L. Fleury,  et al., "Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature," Phys. Rev. Lett. 84, 1148-1151 (2000).
[CrossRef]

Brouri, R.

Fleury, L.

L. Fleury,  et al., "Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature," Phys. Rev. Lett. 84, 1148-1151 (2000).
[CrossRef]

Kako, S.

S. Kako,  et al., "A gallium nitride single-photon source operating at 200 K," Nat. Mater. 5, 887-892 (2006).
[CrossRef]

Kumar, P.

T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer,  et al., "Stable Solid-State Source of Single Photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef]

Lee, T.-H.

T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
[CrossRef]

Lochmann, A.

A. Lochmann,  et al., "Electrically driven quantum dot single photon source," Phys. Status Solidi C 4, 547-550 (2007).
[CrossRef]

Lounis, B.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Mehta, A.

T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
[CrossRef]

Michler, P.

P. Michler,  et al., "Quantum correlation between photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef]

Orrit, M.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Sebald, K.

K. Sebald,  et al., "Single-photon emission of CdSe quantum dots at temperatures up to 200 K," Appl. Phys. Lett. 81, 2920-2922 (2002).
[CrossRef]

Strauf, S.

S. Strauf,  et al., "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Yuan, Z.

Z. Yuan,  et al., "Electrically Driven Single-Photon Source," Science 295, 102-105 (2002).
[CrossRef]

Appl. Phys. Lett.

K. Sebald,  et al., "Single-photon emission of CdSe quantum dots at temperatures up to 200 K," Appl. Phys. Lett. 81, 2920-2922 (2002).
[CrossRef]

T.-H. Lee, P. Kumar, and A. Mehta, "Oriented semiconducting polymer nanostructures as on-demand roomtemperature single-photon sources," Appl. Phys. Lett. 85, 100-102 (2004).
[CrossRef]

Nat. Mater.

S. Kako,  et al., "A gallium nitride single-photon source operating at 200 K," Nat. Mater. 5, 887-892 (2006).
[CrossRef]

Nat. Photonics

S. Strauf,  et al., "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Nature

P. Michler,  et al., "Quantum correlation between photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

L. Fleury,  et al., "Nonclassical Photon Statistics in Single-Molecule Fluorescence at Room Temperature," Phys. Rev. Lett. 84, 1148-1151 (2000).
[CrossRef]

C. Kurtsiefer,  et al., "Stable Solid-State Source of Single Photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef]

Phys. Status Solidi C

A. Lochmann,  et al., "Electrically driven quantum dot single photon source," Phys. Status Solidi C 4, 547-550 (2007).
[CrossRef]

Rep. Prog. Phys.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Science

Z. Yuan,  et al., "Electrically Driven Single-Photon Source," Science 295, 102-105 (2002).
[CrossRef]

Other

A. J. Bennett,  et al., "Microcavity single-photon-emitting diode," Appl. Phys. Lett.  86, 181102-1-181102-3 (2005).

J. I. Gonzalez,  et al., "Quantum Mechanical Single-Gold-Nanocluster Electroluminescent Light Source at Room Temperature," Phys. Rev. Lett.  93, 147402-1-147402-4 (2004).

U. Hakanson, et al., "Nano-aperture fabrication for single quantum dot spectroscopy," Nanotechnology 14, 675-679 (2003).

G. J. Beirne,  et al., "Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots," Phys. Rev. B.  75, 195302-1-195302-7 (2007).

J. J. Finley,  et al., "Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot," Phys. Rev. B.  63, 161305-1-161305-4 (2001).

M. Reischle,  et al., "Influence of the exciton dark state on the optical and quantum optical properties of single quantum dots." Submitted for publication.

M. B. Ward,  et al., "Electrically driven telecommunication wavelength single-photon source," Appl. Phys. Lett.  90, 63512-1-63512-3 (2007).

M. Pelton,  et al., "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett.  89, 233602-1-233602-4 (2002).

D. J. P. Ellis,  et al., "Electrically addressing a single self-assembled quantum dot," Appl. Phys. Lett.  88, 133509-1-133509-3 (2006).

R. Ro?bach,  et al., "Red single-photon emission from an InP/GaInP quantum dot embedded in a planar monolithic microcavity," Appl. Phys. Lett.  92, 071105-1-071105-3 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics