Abstract

A process to fabricate porous silicon Bragg reflectors patterned on a micrometer lateral scale over wafer areas of several square centimeters is described. This process is based on a new type of projection system involving a megavolt accelerator and a quadrupole lens system to project a uniform distribution of MeV ions over a wafer surface, which is coated with a multilevel mask. In conjunction with electrochemical anodisation, this enables the rapid production of high-density arrays of a variety of optical and photonic components in silicon such as waveguides and optical microcavities for applications in high-definition reflective displays and optical communications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
    [CrossRef]
  2. L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-78 (1997).
    [CrossRef]
  3. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
    [CrossRef]
  4. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097 (2005)
    [CrossRef] [PubMed]
  5. V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, Germany 2002).
    [CrossRef]
  6. D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
    [CrossRef]
  7. M. B. H. Breese and D. Mangaiyarkarasi, "Porous silicon Bragg reflectors with sub-micrometer lateral dimensions," Opt. Express 15, 5537-5542 (2007).
    [CrossRef] [PubMed]
  8. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
    [CrossRef]
  9. M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
    [CrossRef]
  10. E. Rimini, Ion Implantation: Basics to Device Fabrication, (The International Series in Engineering and Computer Science, Springer 1994)
  11. M. Nastasi and J. W. Mayer, Ion Implantation and Synthesis of Materials (Springer Series in Materials Science by Springer, 2006)
    [CrossRef]
  12. J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
    [CrossRef]
  13. R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
    [CrossRef]
  14. A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
    [CrossRef]
  15. M. B. H. Breese, D. N. Jamieson, and P. J. C. King, Materials Analysis using a Nuclear Microprobe, Wiley, New York, 1996.
  16. M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
    [CrossRef]
  17. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York 1985).

2007 (1)

2006 (2)

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

2005 (1)

2002 (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

2001 (2)

R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
[CrossRef]

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

1998 (1)

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

1997 (1)

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-78 (1997).
[CrossRef]

1995 (1)

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

1994 (1)

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

1990 (1)

M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
[CrossRef]

Berry, I. L.

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

Bettiol, A. A.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

Bhatia, S.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Blackwood, D.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

Breese, M. B. H.

M. B. H. Breese and D. Mangaiyarkarasi, "Porous silicon Bragg reflectors with sub-micrometer lateral dimensions," Opt. Express 15, 5537-5542 (2007).
[CrossRef] [PubMed]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
[CrossRef]

Bukow, H. H.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Burchard, M.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Champeaux, F. J. T.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

Cookson, J. A.

M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
[CrossRef]

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Ehrmann, A.

R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
[CrossRef]

Fauchet, P. M.

Grime, G. W.

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

Jamieson, D. N.

M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
[CrossRef]

Kaesmaier, R.

R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
[CrossRef]

King, P. J. C.

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Loschner, H.

R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
[CrossRef]

Mangaiyarkarasi, D.

M. B. H. Breese and D. Mangaiyarkarasi, "Porous silicon Bragg reflectors with sub-micrometer lateral dimensions," Opt. Express 15, 5537-5542 (2007).
[CrossRef] [PubMed]

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

Meijer, J.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Melngailis, J.

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

Mohondro, R.

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

Mondelli, A. A.

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

Ouyang, H.

Ow, Y. S.

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

Pavesi, L.

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-78 (1997).
[CrossRef]

Rangelow, I. W.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Rocken, H.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Sailor, M. J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Smulders, P. J. C.

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

Stephan, A.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Teo, E. J.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

Vijila, C.

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

Vincent, G.

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

Volland, B.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Weidenmuller, U.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Weiss, S. M.

Zaitsev, A.

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Zhang, J.

Appl. Phys. Lett. (2)

G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994).
[CrossRef]

D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, "Controlled blue-shift of the resonant wavelength in porous silicon microcavities using ion irradiation," Appl. Phys. Lett. 89, 021910 (2006).
[CrossRef]

J Vac Sci Technol. B (1)

J. Melngailis, A. A. Mondelli, I. L. Berry and R. Mohondro, "A review of ion projection lithography," J Vac Sci Technol. B 16, 927-957 (1998).
[CrossRef]

Microelectron. Eng. (1)

R. Kaesmaier, A. Ehrmann and H. Loschner, "Ion projection lithography: status of tool and mask developments," Microelectron. Eng. 57-58, 145-153 (2001).
[CrossRef]

Nat. Mater. (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002).
[CrossRef]

Nucl. Instrum Methods.. B (1)

A. Stephan, J. Meijer, U. Weidenmuller, H. Rocken, H. H. Bukow, M. Burchard, A. Zaitsev, B. Volland, I. W. Rangelow, "The heavy ion micro-projection setup at Bochum," Nucl. Instrum Methods B 181, 39-43 (2001).
[CrossRef]

Nucl. Instrum. Methods B (1)

M. B. H. Breese, D. N. Jamieson, J. A. Cookson, "Measurement and correction of parasitic sextupole components in magnetic quadrupole lenses," Nucl. Instrum. Methods B 47, 443-452 (1990).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, "Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation," Phys. Rev. B 73, 035428 (2006).
[CrossRef]

M. B. H. Breese, P. J. C. King, P. J. C. Smulders, and G. W. Grime, "Dechanneling of MeV protons by 60º dislocations" Phys. Rev. B 51, 2742-2750 (1995).
[CrossRef]

Riv. Nuovo Cimento (1)

L. Pavesi, "Porous silicon dielectric multilayers and microcavities," Riv. Nuovo Cimento 20, 1-78 (1997).
[CrossRef]

Other (5)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamon Press, New York 1985).

V. Lehmann, Electrochemistry of Silicon (Wiley-VCH, Weinheim, Germany 2002).
[CrossRef]

E. Rimini, Ion Implantation: Basics to Device Fabrication, (The International Series in Engineering and Computer Science, Springer 1994)

M. Nastasi and J. W. Mayer, Ion Implantation and Synthesis of Materials (Springer Series in Materials Science by Springer, 2006)
[CrossRef]

M. B. H. Breese, D. N. Jamieson, and P. J. C. King, Materials Analysis using a Nuclear Microprobe, Wiley, New York, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

Schematic of microprobe ion optical system used to project a large area, uniform intensity of beam over wafer surface which is located downstream of the chamber.

Fig. 2.
Fig. 2.

Large area patterned DBRs produced by irradiation with 750 keV He ions with freestanding nickel grids placed over the wafer surface. (a) formed using a single 50 µm period grid, (b) with an additional 12.7 µm period grid.

Fig. 3.
Fig. 3.

SRIM plots of 400 and 700 keV H2 + ions incident on different thicknesses of PR on top of a 7-µm thick Si layer (shown in gray). From left to right the PR thicknesses are 7µm, 3µm and 0 (a) trajectory plots showing how far each ion penetrates through the layer structure. (b) defect density in each case. Both beam energies are shown, with the higher energy to the right

Fig 4.
Fig 4.

(a). Schematic of two photomasks (PM) used to create a multilevel photoresist(PR) mask on the wafer surface. (b) optical reflective images of 10 µm wide DBR lines in three different colours. (c) XSEM view of the DBR layers formed across the RGB lines in (b). (d) horizontal line scans showing the intensity of red, green and blue across the patterned DBR structure.

Fig. 5.
Fig. 5.

(a). Schematic of the fabrication procedure to produce multilevel square pixels in the PR. (b) SEM of the PR pixels with different thicknesses on the wafer surface. (c), (d) high and low magnification optical reflective images of the patterned DBR. (e) optical reflective image of the patterned RYGB pixels. (f) line scan of reflected intensity across the yellow and blue pixels.

Metrics