Abstract

The formation of hemispherical nanostructures and microscaled papilla by ultrafast laser irradiation was found to be a potential method to generate superhydrophbic surface of synthetic polymers. Irradiation of femtosecond laser creates roughened poly(dimethylsiloxane) (PDMS) surface in nano- and microscales, of which topography fairly well imitate a Lotus leaf in nature. The modified surface showed superhydrophobicity with a contact angle higher than 170° as well as sliding angle less than 3°. We further demonstrated that negative replica of the processed PDMS surface exhibit large contact angle hysteresis with a sliding angle of 90° while the positive replica maintains superhydrophobicity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
    [CrossRef] [PubMed]
  2. A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
    [CrossRef]
  3. M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
    [CrossRef] [PubMed]
  4. J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
    [CrossRef]
  5. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
    [CrossRef]
  6. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
    [CrossRef] [PubMed]
  7. A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
    [CrossRef]
  8. K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
    [CrossRef]
  9. A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
    [CrossRef] [PubMed]
  10. M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
    [CrossRef]
  11. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
    [CrossRef] [PubMed]
  12. C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
    [CrossRef]
  13. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
    [CrossRef]
  14. R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem. 28, 988-994 (1936).
    [CrossRef]
  15. A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
    [CrossRef]
  16. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
    [CrossRef]
  17. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
    [CrossRef] [PubMed]
  18. F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
    [CrossRef]
  19. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
    [CrossRef]
  20. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
    [CrossRef]
  21. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
    [CrossRef]
  22. M. A. Seo, D. S. Kim, H. S. Kim, and S. C. Jeoung, "Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser," Opt. Express 14, 3694-3699 (2006).
    [CrossRef] [PubMed]
  23. M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
    [CrossRef] [PubMed]
  24. X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
    [CrossRef]
  25. W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
    [CrossRef]
  26. D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000).
    [CrossRef]
  27. K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
    [CrossRef]
  28. C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
    [CrossRef]
  29. D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003).
    [CrossRef] [PubMed]
  30. L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
    [CrossRef]
  31. P. Erhart, E. M. Bringa, M. Kumar, and K. Albe, "Atomistic mechanism of shock-induced void collapse in nano-porous metals," Phys. Rev. B.  72, 052104(1)-052104(4) (2005)
    [CrossRef]
  32. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, "Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide," J. Appl. Phys.  103, 054910(1)-54910(6) (2008).
    [CrossRef]

2008 (1)

K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
[CrossRef]

2007 (4)

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
[CrossRef]

M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
[CrossRef] [PubMed]

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

2006 (5)

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
[CrossRef] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

M. A. Seo, D. S. Kim, H. S. Kim, and S. C. Jeoung, "Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser," Opt. Express 14, 3694-3699 (2006).
[CrossRef] [PubMed]

M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006).
[CrossRef] [PubMed]

2005 (2)

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

2004 (2)

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

2003 (2)

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003).
[CrossRef] [PubMed]

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

2002 (2)

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

2000 (2)

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000).
[CrossRef]

1999 (2)

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

1997 (1)

X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

1996 (1)

M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
[CrossRef]

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

1994 (2)

A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
[CrossRef]

J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
[CrossRef]

1993 (1)

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

1983 (1)

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

1936 (1)

R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem. 28, 988-994 (1936).
[CrossRef]

Amaratunga, G. A. J.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Athanassiou, A.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Baldacchini, T.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

Baxter, S.

A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
[CrossRef]

Bico, J.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Bohringer, K. F.

A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
[CrossRef] [PubMed]

Boris, J. P.

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

Carey, J. E.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

Case, M. J.

A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
[CrossRef] [PubMed]

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
[CrossRef]

Chang, J. -Y.

K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
[CrossRef]

Chen, L.-J.

K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
[CrossRef]

Chen, W.

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

Chen, Y.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Chhowalla, M.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Chichkov, B. N.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

Choi, D. S.

Choi, W.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Cingolani, R.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Cohen, R. E.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Erlebacher, J.

J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
[CrossRef]

Fadeev, W. A. T.

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

Feng, L.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Fotakis, C.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Fujishima, A.

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

Hashimoto, K.

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Hsieh, M. C.

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

Jeoung, S. C.

Ji, H.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Kabashin, A. V.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

Khorasani, M. T.

M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
[CrossRef]

Kim, C. S.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Kim, D. S.

Kim, H. S.

Kohno, J.-Y.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

Kondow, T.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

Lau, K. K. S.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Laurell, T.

A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
[CrossRef]

Lee, J.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Li, H.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Li, S.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Li, Y.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Luo, C.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Luong, J. H. T.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

Ma, M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Mabry, J. M.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Mafune, F.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

Marko-Varga, G.

A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
[CrossRef]

Mazur, E.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Mazzella, S. A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

McCarthy, T. J.

D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000).
[CrossRef]

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

McKinley, G. H.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Meunier, M.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

Mirzadeh, H.

M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
[CrossRef]

Mourou, G.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Nakajima, A.

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

Oner, D.

D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000).
[CrossRef]

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

Oran, E. S.

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

Ouyang, Q.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Park, C. O.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Park, M. I.

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Parker, S. C.

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003).
[CrossRef] [PubMed]

Passinger, S.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

Persano, L.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Phillips, L.

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

Pisignano, D.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Poulin, S.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Raghunathan, N.

M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
[CrossRef] [PubMed]

Reinhardt, C.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

Ressine, A.

A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Rutledge, G. C.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Sacher, E.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

Sammes, P. G.

M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
[CrossRef]

Sayle, D. C.

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003).
[CrossRef] [PubMed]

Searson, P. C.

J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
[CrossRef]

Seo, M. A.

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Shastry, A.

A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
[CrossRef] [PubMed]

Sieradzki, K.

J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
[CrossRef]

Sinkovits, R. S.

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Stratakis, E.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Sun, M.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Sylvestre, J. P.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

Sylvestre, J.-P.

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

Takeda, Y.

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

Teo, K. B. K.

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Tuteja, A.

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Tzanetakis, P.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Wang, M.-F.

M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
[CrossRef] [PubMed]

Watanabe, T.

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem. 28, 988-994 (1936).
[CrossRef]

Whitesides, G. M.

X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Xia, Y. N.

X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

Xu, L.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Yeh, K. -Y.

K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
[CrossRef]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Youngblood, J.

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

Yu, D.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

Zhai, J.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Zhang, L.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

Zhao, X. M.

X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

Zhou, M.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

Ziaie, B.

M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
[CrossRef] [PubMed]

Zorba, V.

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Adv. Mater. (2)

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, and J. Zhai, "Super-Hydrophobic Surfaces: From Natural to Artificial," Adv. Mater. 14, 1857-1860 (2002).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, "Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate," Adv. Mater. 11, 1365-1368 (1999).
[CrossRef]

Appl. Phys. A (1)

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000).
[CrossRef]

Appl. Phys. A. (1)

C. Reinhardt, S. Passinger, V. Zorba, B. N. Chichkov, and C. Fotakis, "Replica molding of picosecond laser fabricated Si microstructures," Appl. Phys. A. 87, 673-677 (2007)
[CrossRef]

Biotechnol. (1)

A. Ressine, G. Marko-Varga, and T. Laurell, "Porous silicon protein microarray technology and ultra-/superhydrophobic state for improved bioanalytical readout," Biotechnol. Annu. Rev. 13, 149-200 (2007).
[CrossRef]

Ind. Eng. Chem. (1)

R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem. 28, 988-994 (1936).
[CrossRef]

J. Am. Chem. Soc. (2)

D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581-8594 (2003).
[CrossRef] [PubMed]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176-7177 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. Erlebacher, K. Sieradzki, and P. C. Searson, "Computer Simulations of Pore Growth in Silicon," J. Appl. Phys. 76, 182-187 (1994).
[CrossRef]

J. Mater. Chem. (1)

X. M. Zhao, Y. N. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

J. Phys. Chem. B (2)

F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575-7577 (2002).
[CrossRef]

J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864-16869 (2004).
[CrossRef]

J. Phys.: Condens. Matter (1)

L. Phillips, R. S. Sinkovits, E. S. Oran, and J. P. Boris, "The interaction of shocks and defects in Lennard-Jones crystal," J. Phys.: Condens. Matter,  5, 6357-6376 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of Room-Temperature Photoluminescent Nanoparticles by Ultrafast Laser Processing of Single-Crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005).
[CrossRef]

Langmuir (7)

W. Chen, W. A. T. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood, T. J. McCarthy, "Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples," Langmuir 15, 3395-3399 (1999).
[CrossRef]

D. Oner and T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability," Langmuir 16, 7777-7782 (2000).
[CrossRef]

K. -Y. Yeh, L.-J. Chen, and J. -Y. Chang, "Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces," Langmuir 24, 245-251 (2008).
[CrossRef]

M.-F. Wang, N. Raghunathan, and B. Ziaie, "A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces," Langmuir 23, 2300-2303 (2007).
[CrossRef] [PubMed]

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, "Artificial Lotus leaf by nanocasting," Langmuir 21, 8978-8981 (2005).
[CrossRef] [PubMed]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, "Superhydrophobic Surfaces Prepared by Microstructuring of Silicon using a Femtosecond Laser," Langmuir 22, 4917-4919 (2006).
[CrossRef] [PubMed]

A. Shastry, M. J. Case, K. F. Bohringer, "Directing Droplets using Microstructured Surfaces," Langmuir 22, 6161-6167 (2006).
[CrossRef] [PubMed]

Nano Lett. (1)

K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla and G. A. J. Amaratunga, "Superhydrophobic Carbon Nanotube Forests," Nano Lett. 3, 1701-1705 (2003).
[CrossRef]

Nanotechnology (1)

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, "Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation," Nanotechnology 17, 3234-3238 (2006)
[CrossRef]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Radiant Phys. Chem. (1)

M. T. Khorasani, H. Mirzadeh and P. G. Sammes, "Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material," Radiant Phys. Chem. 47, 881-888 (1996).
[CrossRef]

Science (1)

A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, "Designing superoleophobic surfaces," Science 318, 1618-1622 (2007).
[CrossRef] [PubMed]

Trans. Faraday Soc. (1)

A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Trans. Faraday Soc. 40, 546-551 (1994).
[CrossRef]

Other (2)

P. Erhart, E. M. Bringa, M. Kumar, and K. Albe, "Atomistic mechanism of shock-induced void collapse in nano-porous metals," Phys. Rev. B.  72, 052104(1)-052104(4) (2005)
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, "Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide," J. Appl. Phys.  103, 054910(1)-54910(6) (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Flowchart for creating the superhydrophobic surface and casting process of PDMS to replicate the fs-laser irradiated PDMS surface.

Fig. 2.
Fig. 2.

SEM images of PDMS sheet exposed to fs-laser pulses with a fluence of 4.4 J/cm2: (a) low magnification and (b) high magnification. SEM micrographs for the negative replica ((c) and (d) as well as the positive ones ((e) and (f)) of the irradiated PDMS surface are also shown.

Fig. 3.
Fig. 3.

Microscopic images of the water drops on the three types of surfaces of laser irradiated PDMS (a), its negative replica (b) and positive replica (c).

Fig. 4.
Fig. 4.

(a). Contact angle (open circle) and sliding angle (closed circle) of PDMS surface as a function of the laser fluence. (b) and (c) shows the roughness (solid rectangular) and laser spot diameter (open triangle) as a function of the laser fluence, respectively. The roughness is defined by the ratio of actual area of the solid surface to the projected area.

Fig. 5.
Fig. 5.

AFM topographic images of PDMS surface irradiated with laser fluence of 3.0 J/cm2 (a), 3.4 J/cm2 (b), 3.8 J/cm2 (c), and 6.3 J/cm2 (d), respectively. The lower part of each image displays the cross-sectional profiles observed in the depicted dotted line. It should be noted that the surface of the papilla as well as the valley of modified PDMS sheet are covered with almost hemispherical structures. The height of papilla increased with increasing laser fluence. The presence of roughened region between the papilla is also clearly seen in the cross-sectional profiles of (c) and (d).

Fig. 6.
Fig. 6.

Illustrations of the roughened surface to explain the C-B model (a), Wenzel model (b), and a proposed model to describe the wetting nature of negative replica sheet (c). PDMS solid, water, and air are depicted with yellow, blue, and white colors, respectively.

Fig. 7.
Fig. 7.

AFM images of the PDMS surface irradiated with fs-laser pulses by using a telecentric lens (N.A. ~0.035) at a repetition rate of 1 KHz. To make overlapping between the successive laser pulses, the scanning speed is fixed into about 10 mm/sec.

Tables (1)

Tables Icon

Table 1. Contact angle and sliding angle of the water drops on the three types of PDMS surfaces. The laser fluence to modify the PDMS surface is 4.4. J/cm2. All the angles are the average values of five determinations on five different areas of the surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

COS θ C B = Φ s COS θ Y ( 1 Φ s )
COS θ W = r COS θ Y
r c = Φ s ( 1 Φ s ) COS θ Y

Metrics