Abstract

A novel polymeric four-wavelength multiplexer based on a new design concept of cascaded step-size multimode interferometer (CSS-MMI) is first presented. It can be fabricated by using planar lightwave circuit (PLC) technology and is highly compatible with both current 1-Gbps and future 10Gbps optical transceivers for applications in next-generation 1-Gbps and 10-Gbps coexisting time-division-multiplexed passive optical network (TDM-PON). By combining two types of proposed CSS-MMI 1×2 wavelength splitters, a compact 1.5cm-long four-wavelength multiplexer is realized without requiring complicated design and tedious calculation. In addition, the upstream wavelength channel at 1310 nm has 0.18 dB low insertion loss and three downstream wavelength channels at 1490 nm, 1550 nm and 1590 nm exhibit insertion losses of 1.21 dB, 1.34 dB and 1.02 dB, respectively, with their extinction ratios ranging from 11.71 dB to 32.07 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
    [CrossRef]
  2. J.-K. Hong and S.-S. Lee, "1x2 wavelength multiplexer with high transmittances using extraneous self-imaging phenomenon," J. of Lightwave Technol. 25, 1264-1268 (2007).
    [CrossRef]
  3. J.-K. Hong and S.-S. Lee, "PLC-based novel triplexer with a simple structure for optical transceiver module applications," IEEE Photon. Technol. Lett. 20, 21-23 (2008).
    [CrossRef]
  4. L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  5. M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
    [CrossRef]
  6. J. Xiao, X. Liu, and X. Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Express 15, 8300-8308 (2007).
    [CrossRef] [PubMed]

2008 (1)

J.-K. Hong and S.-S. Lee, "PLC-based novel triplexer with a simple structure for optical transceiver module applications," IEEE Photon. Technol. Lett. 20, 21-23 (2008).
[CrossRef]

2007 (3)

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

J.-K. Hong and S.-S. Lee, "1x2 wavelength multiplexer with high transmittances using extraneous self-imaging phenomenon," J. of Lightwave Technol. 25, 1264-1268 (2007).
[CrossRef]

J. Xiao, X. Liu, and X. Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Express 15, 8300-8308 (2007).
[CrossRef] [PubMed]

2006 (1)

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Chin, M.-K.

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Hong, J.-K.

J.-K. Hong and S.-S. Lee, "PLC-based novel triplexer with a simple structure for optical transceiver module applications," IEEE Photon. Technol. Lett. 20, 21-23 (2008).
[CrossRef]

J.-K. Hong and S.-S. Lee, "1x2 wavelength multiplexer with high transmittances using extraneous self-imaging phenomenon," J. of Lightwave Technol. 25, 1264-1268 (2007).
[CrossRef]

Hong, X.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

Huang, W.-P.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

Ibrahim, M. H.

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Kassim, N. M.

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Lee, S.-S.

J.-K. Hong and S.-S. Lee, "PLC-based novel triplexer with a simple structure for optical transceiver module applications," IEEE Photon. Technol. Lett. 20, 21-23 (2008).
[CrossRef]

J.-K. Hong and S.-S. Lee, "1x2 wavelength multiplexer with high transmittances using extraneous self-imaging phenomenon," J. of Lightwave Technol. 25, 1264-1268 (2007).
[CrossRef]

Lee, S.-Y.

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Li, X.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

Liang, W.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

Liu, X.

Mohammad, A. B.

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Sun, X.

Xiao, J.

Xu, C.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

Xu, C.-Q.

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

IEEE J. Lightwave Technol. (1)

W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, "Optical transceivers for fiber-to-the-premises applications: system requirements and enabling technologies," IEEE J. Lightwave Technol. 25, 11-27 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-K. Hong and S.-S. Lee, "PLC-based novel triplexer with a simple structure for optical transceiver module applications," IEEE Photon. Technol. Lett. 20, 21-23 (2008).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

J. of Lightwave Technol. (1)

J.-K. Hong and S.-S. Lee, "1x2 wavelength multiplexer with high transmittances using extraneous self-imaging phenomenon," J. of Lightwave Technol. 25, 1264-1268 (2007).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, S.-Y. Lee, and M.-K. Chin, "A novel 1x2 multimode interference optical wavelength filter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Microwave Opt. Technol. Lett. 49, 1024-1028 (2006).
[CrossRef]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Schematic diagram of a MMI filter and (b) simulation result of its 3dB passband width versus the ratio of the width of the MMI region to the width of input/output waveguide. The central wavelength is set to be 1500nm.

Fig. 2.
Fig. 2.

Schematic structures of the proposed (a) type-I and (b) type-II CSS-MMI 1×2 wavelength splitters

Fig. 3.
Fig. 3.

BPM simulation result for the proposed type-I CSS-MMI 1×2 wavelength splitter with amplitude distribution of optical wave at (a) 1.49µm and (b) 1.55µm, respectively.

Fig. 4.
Fig. 4.

BPM simulation result for the proposed type-II CSS-MMI 1×2 wavelength splitter with amplitude distribution of optical wave at (a) 1.49µm and (b) 1.55µm, respectively.

Fig. 5.
Fig. 5.

The layout design of 4-wavelength multiplexer based on two kinds of MMI wavelength splitter.

Fig. 6.
Fig. 6.

The BPM simulation of the amplitude of four wavelength channels in the proposed multiplexer. The total dimension of the simulated window is 125µm×17,500µm.

Fig. 7.
Fig. 7.

Relative output optical spectra of the proposed CSS-MMI four-wavelength multiplexer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L r 4 n r W e 2 λ 0
s c s exp ( i β s W 1 z ) φ s ( r )
β s W 1 s ( s + 2 ) π L r ( W 1 )
v c v φ v ( r ) exp [ i v ( v + 2 ) π ( L 1 L r ( W 1 ) + z L 1 L r ( W 2 ) ) ]
L 1 = L rb ( W 1 ) = L ra ( W 1 ) ( 1 + ε )
L 2 = L ra ( W 2 ) ( 1 ε )
L 1 = L ra ( W 1 ) = L rb ( W 1 ) ( 1 ε )
L 2 = L rb ( W 2 ) ε

Metrics