Abstract

The chirp effect on a X-ray emission intensity from a CsCl aqueous solution jet irradiated by femtosecond pulses was systematically studied. The p-polarized chirped pulses were more efficient as compared with the shortest pulses determined by the spectral bandwidth. The negatively-chirped pulses of approximately 240 fs duration produced up to 10 times larger X-ray intensity as compared with the transform-limited 160 fs pulses. The angular dependence of X-ray generation can be explained by the resonant absorption. Numerical simulations of electron density evolution due to the avalanche and multi-photon absorption supports qualitatively well the experimental observations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
    [CrossRef] [PubMed]
  2. J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
    [CrossRef]
  3. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
    [CrossRef] [PubMed]
  4. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
    [CrossRef] [PubMed]
  5. P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
    [CrossRef] [PubMed]
  6. J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
    [CrossRef]
  7. C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004).
    [CrossRef] [PubMed]
  8. D. Mathur, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391(1–2), 1–118, (2004).
    [CrossRef]
  9. H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
    [CrossRef]
  10. C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
    [CrossRef]
  11. M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
    [CrossRef]
  12. G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, “Ultrashort 1-khz laser plasma hard x-ray source,” Opt. Lett. 27, 866–868, (2002).
    [CrossRef]
  13. K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
    [CrossRef]
  14. K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
    [CrossRef]
  15. M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
    [CrossRef]
  16. H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
    [CrossRef]
  17. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).
  18. D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications, (Cambridge, Cambridge University Press, 1999).
  19. N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation, (Moscow, Nauka (in Russ.), 1991).
  20. F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55, (1987).
    [CrossRef] [PubMed]
  21. A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005).
    [CrossRef]
  22. V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
    [CrossRef]
  23. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
    [CrossRef]
  24. N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999).
    [CrossRef]
  25. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
    [CrossRef]
  26. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
    [CrossRef]
  27. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
    [CrossRef]
  28. R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).
  29. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

2007 (2)

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).

2006 (1)

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

2005 (4)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
[CrossRef]

A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005).
[CrossRef]

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

2004 (3)

C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004).
[CrossRef] [PubMed]

D. Mathur, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391(1–2), 1–118, (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
[CrossRef]

2003 (1)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

2002 (4)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
[CrossRef]

G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, “Ultrashort 1-khz laser plasma hard x-ray source,” Opt. Lett. 27, 866–868, (2002).
[CrossRef]

1999 (2)

N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999).
[CrossRef]

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

1998 (1)

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

1997 (2)

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
[CrossRef]

1995 (2)

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

1991 (1)

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

1987 (1)

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55, (1987).
[CrossRef] [PubMed]

Anand, M.

M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
[CrossRef]

Attwood, D.

D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications, (Cambridge, Cambridge University Press, 1999).

Audebert, P.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

Barty, C. P. J.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Bastiani-Ceccotti, S.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Berezhiani, V. I.

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

Bressler, C.

C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004).
[CrossRef] [PubMed]

Brunel, F.

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55, (1987).
[CrossRef] [PubMed]

Cavalleri, A.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Chenais-Popovics, C.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Chergui, M.

C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004).
[CrossRef] [PubMed]

Elsaesser, T.

Falcone, R. W.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

Fukumura, H.

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
[CrossRef]

Gamaly, E. E.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

Gary, S.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Gauthier, J.-C.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

Geindre, J.-P.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

Getz, A. V.

A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005).
[CrossRef]

Girard, F.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Goldston, R. J.

R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

Guo, T.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Hallo, L.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Hatanaka, K.

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

Ikhlef, A.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Jiang, Z.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
[CrossRef]

Kammler, M.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Kapteyn, C.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

Kieffer, J. C.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Korn, G.

Koroteev, N. I.

N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation, (Moscow, Nauka (in Russ.), 1991).

Krainov, V. P.

A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005).
[CrossRef]

Krishnamurthy, M.

M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
[CrossRef]

Linden, S.

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

Luther-Davies, B.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

Mahajan, S. M.

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

Maksimchuk, A.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

Mathur, D.

D. Mathur, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391(1–2), 1–118, (2004).
[CrossRef]

Matsuo, S.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

Matsushima, I.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
[CrossRef]

Miura, T.

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
[CrossRef]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

More, R. M.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

Murnane, M. M.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

Nagels-Silvert, V.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Nakano, H.

H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
[CrossRef]

Nantel, M.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

Nicolai, P.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Nishikawa, T.

H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–200, (2007).

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

Pekker, M.

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

Pépin, H.

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Peyrusse, O.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Price, D. F.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

R., A.

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

Renaudin, P.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Richardson, M.

Rode, A. V.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

Rosen, M. D.

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

Rutherford, P.

R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

Safvan, C. P.

M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
[CrossRef]

Shepherd, R.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

Shumai, I. L.

N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation, (Moscow, Nauka (in Russ.), 1991).

Siders, C. W.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Silies, M.

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

Skvortsov, V.

N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999).
[CrossRef]

Sokolowski-Tinten, K.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

Stiel, H.

té, C. Y. Cô

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Thoss, A.

Tikhonchuk, V.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

Toth, C.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Tzortzakis, S.

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Uesugi, N.

H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
[CrossRef]

Umstadler, D.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

Vogel, N.

N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999).
[CrossRef]

Vogt, U.

von der Linde, D.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

von Hoegen, M. H.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

White, W. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

Wilson, K. R.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Witte, H.

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

Workman, J.

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

Yoshida, Z.

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

Zacharias, H.

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

Appl. Phys. B (4)

M. Anand, C. P. Safvan, and M. Krishnamurthy, “Hard X-ray generation from microdroplets in intense laser fields,” Appl. Phys. B 81, 469–477, (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047, (2005).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368, (2003).
[CrossRef]

M. Silies, S. Linden, H. Witte, and H. Zacharias, “The dependence of the Fe Kα yield on the chirp of the femtosecond exciting laser pulse,” Appl. Phys. B 87, 623–627, (2007).
[CrossRef]

Appl. Phys. Lett. (3)

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast X-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” Appl. Phys. Lett. 80, 3925–3927, (2002).
[CrossRef]

J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadler, “Application of a picosecond soft x-ray source to time-resolved plasma dynamics,” Appl. Phys. Lett. 70, pp. 312–314, (1997).
[CrossRef]

H. Nakano, T. Nishikawa, and N. Uesugi, “Soft x-ray pulse generation from femtosecond laser-produced plasma with reduced debris using a metal-doped glass target,” Appl. Phys. Lett. 70, 16–18, (1997).
[CrossRef]

Chem. Phys. (1)

K. Hatanaka, T. Miura, and H. Fukumura, “White X-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as function of laser intensity, solute concentration, and solute atomic number,” Chem. Phys. 299, 265–270, (2004).
[CrossRef]

Chem. Rev. (1)

C. Bressler and M. Chergui, “Ultrafast x-ray absorption spectroscopy,” Chem. Rev. 104, 1781–1812, (2004).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

IEEE Trans. Plasma Sci. (1)

N. Vogel and V. Skvortsov, “The x-ray emission from vacuum discharge micro fragments at comparatevly low applied voltages,” IEEE Trans. Plasma Sci. 27, 122–123, (1999).
[CrossRef]

J. Exper. & Theor. Phys. (1)

A. V. Getz and V. P. Krainov, “Vacuum heating of large atomic clusters by superintense femtosecond laser pulse,” J. Exper. & Theor. Phys. 101, 80–87, (2005).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

C. Y. Cô té, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. PépinJ. Phys. B: At. Mol. Opt. Phys. 31, L883–L889, (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957, (2002).
[CrossRef]

Phys. Rep. (1)

D. Mathur, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391(1–2), 1–118, (2004).
[CrossRef]

Phys. Rev. B (1)

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B 73, 214101, (2006).
[CrossRef]

Phys. Rev. E (2)

V. I. Berezhiani, S. M. Mahajan, Z. Yoshida, and M. Pekker, “Dynamics of self-trapped singular beams in an underdense plasma,” Phys. Rev. E 65, 04641–5, (2002).
[CrossRef]

J.-C. Gauthier, J.-P. Geindre, P. Audebert, and A. R., “Observation of KL - LL x-ray satellites of aluminum in femtosecond laser-produced plasmas,” Phys. Rev. E 52, 2963–2968, (1995).
[CrossRef]

Phys. Rev. Lett. (3)

F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55, (1987).
[CrossRef] [PubMed]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255, (1995).
[CrossRef] [PubMed]

P. Audebert, P. Renaudin, S. Bastiani-Ceccotti, J.-P. Geindre, C. Chenais-Popovics, S. Tzortzakis, V. Nagels-Silvert, R. Shepherd, I. Matsushima, S. Gary, F. Girard, O. Peyrusse, and J.-C. Gauthier, “Picosecond timeresolved X-Ray absorption spectroscopy of ultrafast aluminum plasmas,” Phys. Rev. Lett. 94, 025004/1–4, (2005).
[CrossRef] [PubMed]

Science (2)

M. M. Murnane, C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast X-ray pulses from laser-produced plasmas,” Science 251, 531–536, (1991).
[CrossRef] [PubMed]

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, Science 286, 1340, (1999).
[CrossRef] [PubMed]

Other (5)

D. Attwood, Soft X-rays and extreme ultraviolet radiation: principles and applications, (Cambridge, Cambridge University Press, 1999).

N. I. Koroteev and I. L. Shumai, Physics of high-intensity laser radiation, (Moscow, Nauka (in Russ.), 1991).

R. J. Goldston and P. Rutherford, Introduction to Plasma Physics (London, Inst. of Phys. Publishing, Bristol & Philadelphia, 1997).

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. doi: 10.1007/12-2007-122 (2007), published on line Oct. 27).

H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications, (Weinheim, Wiley-VCH, 2006) ch. 9.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(color online/final size) Setup used to chirp fs-pulses: XD is the X-ray detector, OL - objective lens, GR1,2 - gratings, S - sample, RM - retro-mirror, SL - slit defining the spectral width, and RNG - regenerative amplifier of fs-pulses. The incoming and outgoing pulses are separated by a slight off-plane angle of mirror (RM).

Fig. 2.
Fig. 2.

(color online/final size) The dependence of X-ray intensity on the pulse duration at different values of chirp for s-pol. (a) and p-pol. (b) in aqueous solution of CsCl (please, note the shortest pulse is at the center of the figure). Pulse energy was Ep =0.38 mJ at focus; the pulse duration was measured before the objective lens. Angle of incidence was 58 degrees. For comparison, X-ray emission by non-chirped transform-limited pulses (controlled by slit SL (Fig. 1)) is also plotted. Arrow (a) marks the shortest pulse duration at the focus.

Fig. 3.
Fig. 3.

(color online/final size) Laser incident angle dependence of the X-ray emission from the CsCl aqueous solution (4 mol/dm3) for s- and p-pol. Superimposed are the Fresnel reflection coefficients R p,s (left axis) for the corresponding polarizations at the air-CsCl aqueous solution interface (the refractive indices are nair =1, nsol .=1.38; the Brewster angle θB =54°). Pulse energy was 0.30 mJ; X-ray detector was at 10 cm distance for the p-pol. and at 5 cm for s-pol.

Fig. 4.
Fig. 4.

(color online/final size) Evolution of ionisation rate dne /dt [cm-3s-1](calculated by eqn. 2) during the pulse of τ p =160 fs duration at the positive and negative chirp |β|=6×10-5 fs-2, at which the pulse duration is 255 fs (see, Fig. 2(b)). Material has ionization potential J=8 eV and the irradiance was I=30 TW/cm2.

Fig. 5.
Fig. 5.

(Supplement figure) Hard X-ray emission spectra for the negatively-chirped 240 fs, (β<0) positively-chirped 240 fs (β>0), and transform-limited 160 fs (β=0) p-pol. pulses, respectively. Spectra are not corrected for the transmission in a 15-cm-long path in air; the transmission is shown on the right axis. The experimental conditions of X-ray generation are the same as those for Fig. 2 only the pulse energy was Ep =0.30 mJ (at focus). The spectra were detected by the Si(Li) detector (Rontek, XFlash Detector Type 1100). The following lines of Cs and Cl can be recognized: the line at 2.55 keV (Cl at 2.62 keV), 4.26 keV (Cs at 4.28 keV), 4.60 keV (Cs 1 at 4.61 keV), and 4.89 keV (Cs 2 at 4.93 keV) according to the Ref. [X-ray data booklet, 2nd Edition, Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory, 2001].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I i I r I i = τ ( θ ) 2 ( 2.31 exp ( 2 τ ( θ ) 3 ) 3 ) 2 ,
n e ( ω ins ( t ) ) = ( n e 0 + n a w m p i w i m p [ 1 e w i m p t ] ) e w i m p t ,
P br ~ Z 2 n e n i T e [ W m 3 ] ,

Metrics