Abstract

We present here a non-labeled, elemental analysis detection technique that is suitable for microfluidic chips, and demonstrate its applicability with the sensitive detection of sodium (Na). Spectroscopy performed on small volumes of liquids can be used to provide a true representation of the composition of the isolated fluid. Performing this using low power instrumentation integrated with a microfluidic platform makes it potentially feasible to develop a portable system. For this we present a simple approach to isolating minute amounts of fluid from bulk fluid within a microfluidic chip. The chip itself contains a patterned thin film resistive element that super-heats the sample in tens of microseconds, creating a micro-bubble that extrudes a micro-droplet from the microchip. For simplicity a non-valved microchip is used here as it is highly compatible to a continuous flow-based fluidic system suitable for continuous sampling of the fluid composition. We believe such a non-labeled detection technique within a microfluidic system has wide applicability in elemental analysis. This is the first demonstration of laser-induced breakdown spectroscopy (LIBS) as a detection technology in conjunction with microfluidics, and represents first steps towards realizing a portable lower power LIBS-based detection system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
    [CrossRef] [PubMed]
  2. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
    [CrossRef]
  3. L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta Part B 57, 1109-1113 (2002).
    [CrossRef]
  4. R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
    [CrossRef]
  5. D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000).
    [CrossRef]
  6. H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
    [CrossRef]
  7. S. Morel, N. Leone, P. Adam, and J. Amouroux, "Detection of bacteria by time-resolved laser induced breakdown spectroscopy," Appl. Opt. 42, 6184-6191 (2003).
    [CrossRef] [PubMed]
  8. I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
    [CrossRef]
  9. G. W. Rieger, M. T. Taschuk, Y. T. Tsui, and R. Fedosejevs, "Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses," Appl. Spectrosc. 56, 689-698 (2002).
    [CrossRef]
  10. M. T. Taschuk, I. V. Cravetchi, Y. Y. Tsui, and R. Fedosejevs, "MicroLIBS," in Laser-Induced Breakdown Spectroscopy, J. P. Singh and N. S. Thakur, eds., Spectrochim. Acta Part B, Elsevier Science B. V. (Amsterdam, The Netherlands 2007).
  11. J. J. Zayhowski and C. Dill, "Diode-pumped passvely Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
    [CrossRef] [PubMed]
  12. J. J. Zayhowski, "Passively Q-switched microchip lasers and applications," Rev. Laser Eng. 26, 841-846 (1998).
    [CrossRef]
  13. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
    [CrossRef]
  14. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
    [CrossRef]
  15. A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  16. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef] [PubMed]
  17. A. Kumar, F. Y. Yueh, S. Burgess, and J. Singh, "Characterization of malignant tissue cells by laser-induced breakdown spectroscopy," Appl. Opt. 43, 5399-5403 (2003).
    [CrossRef]
  18. C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000).
    [CrossRef] [PubMed]
  19. N. H. Cheung and E. S. Yeung, "Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown," Appl. Spectrosc. 47, 882-886 (1993).
    [CrossRef]
  20. N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994).
    [CrossRef] [PubMed]
  21. W. F. Ho, C. W. Ng, and N. H. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
    [CrossRef]
  22. N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).
  23. O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
    [CrossRef]
  24. K. Lo and N. H. Cheung, "ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions," Appl. Spectrosc. 56, 682-688 (2002).
    [CrossRef]
  25. Y. Godwal, S. L. LUI, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Determination of lead in water using laser ablation-laser induced fluorescence," Spectrochim. Acta, Part B: Atomic Spectroscopy 62, 1443-1447 (2007).
    [CrossRef]
  26. Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).
  27. G. Arca, A. Ciucci, V. Palleshi, S. Rastelli, and E. Tognoni, "Trace element analysis in water by the laser-induced breakdown spectroscopy technique," Appl. Spectrosc. 51, 1102-1105 (1997).
    [CrossRef]
  28. R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
    [CrossRef]
  29. L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
    [CrossRef] [PubMed]
  30. M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
    [CrossRef]
  31. M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).
  32. W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).
  33. C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004).
    [CrossRef] [PubMed]
  34. N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
    [CrossRef]
  35. S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
    [CrossRef] [PubMed]
  36. V. N. Hoang, "Thermal Management Strategies for Microfluidic Devices," M.Sc thesis, Electrical and Computer Engineering, (University of Alberta, Edmonton, Canada 2008).
  37. G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
    [CrossRef] [PubMed]
  38. Y. Ralchenko, F. C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, "National Institute of Standards and Technology, Gaithersburg, MD.," NIST Atomic Spectra Database (version 3.1.3), [Online], Available: http://physics.nist.gov/asd3 [2007, October 2001]. (2007).
  39. C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
    [CrossRef]

2008

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

2007

Y. Godwal, S. L. LUI, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Determination of lead in water using laser ablation-laser induced fluorescence," Spectrochim. Acta, Part B: Atomic Spectroscopy 62, 1443-1447 (2007).
[CrossRef]

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

2006

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

2005

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
[CrossRef]

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

2004

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004).
[CrossRef] [PubMed]

2003

2002

2001

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

2000

D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000).
[CrossRef] [PubMed]

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

1999

M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).

1998

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

J. J. Zayhowski, "Passively Q-switched microchip lasers and applications," Rev. Laser Eng. 26, 841-846 (1998).
[CrossRef]

1997

1996

R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

1994

R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
[CrossRef]

J. J. Zayhowski and C. Dill, "Diode-pumped passvely Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

1993

1988

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Adam, P.

Ainsley, C.

N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
[CrossRef]

Allain, L. R.

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

Alvarez-Chavez, J. A.

Amouroux, J.

Amponsah-Manager, K.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

Arca, G.

Askari, M.

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

Backhouse, C. J.

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

Beaven, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Buckley, S. G.

Burgess, S.

Buskirk, W. A.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Cheung, N. H.

K. Lo and N. H. Cheung, "ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions," Appl. Spectrosc. 56, 682-688 (2002).
[CrossRef]

C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000).
[CrossRef] [PubMed]

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

W. F. Ho, C. W. Ng, and N. H. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
[CrossRef]

N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

N. H. Cheung and E. S. Yeung, "Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown," Appl. Spectrosc. 47, 882-886 (1993).
[CrossRef]

Ciucci, A.

Clarkson, W. A.

Cravetchi, I. V.

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

DeLucia, F. C.

Derby, B.

N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
[CrossRef]

Dill, C.

Dinh, T. V.

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

Fedosejevs, R.

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

G. W. Rieger, M. T. Taschuk, Y. T. Tsui, and R. Fedosejevs, "Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses," Appl. Spectrosc. 56, 689-698 (2002).
[CrossRef]

Fleige, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Fujii, M.

M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).

Godwal, Y.

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

Y. Godwal, S. L. LUI, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Determination of lead in water using laser ablation-laser induced fluorescence," Spectrochim. Acta, Part B: Atomic Spectroscopy 62, 1443-1447 (2007).
[CrossRef]

Gornushkin, I. B.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

Hackleman, D. E.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Hakkanen, H.

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

Hall, S. T.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Hamazaki, T.

M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).

Han, J.

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

Hiruma, Y.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Ho, S.

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

Ho, W. F.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

W. F. Ho, C. W. Ng, and N. H. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
[CrossRef]

Horie, M.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Houni, J.

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

Hybl, J. D.

Ikeda, K.

M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).

Iwasaki, Y.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Jantzen, E.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Janzen, C.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Jarvius, J.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Johansson, H.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Kaigala, G. V.

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

Kanarek, P. H.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Kaski, S.

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

Kim, J. I.

R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Kim, S. J.

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

Knopp, R.

R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Knoth, J.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Kobayashi, A.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Koke, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Korppi-Tommola, J. E. I.

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Kumar, A.

Lahmann, W.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Lal, A.

C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004).
[CrossRef] [PubMed]

Landegren, U.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Laserna, J. J.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000).
[CrossRef]

Lee, C. H.

C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004).
[CrossRef] [PubMed]

Leone, N.

Liska, M.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Lithgow, G. A.

Lo, K.

Lopez-Moreno, C.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

Low, R. N.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Lui, S. L.

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

McNesby, K. L.

Melin, J.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Miziolek, A. W.

Morel, S.

Morita, I.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Nakamura, M.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Ng, C. W.

C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000).
[CrossRef] [PubMed]

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

W. F. Ho, C. W. Ng, and N. H. Cheung, "Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength," Appl. Spectrosc. 51, 87-91 (1997).
[CrossRef]

Nikolajeff, F.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Nilsson, J.

Nilsson, M.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Noll, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
[CrossRef]

Oest, A.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Offerhaus, H. L.

Ohuchi, K.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Omenetto, N.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

Palleshi, V.

Penterman, R.

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

Radziemski, L. J.

L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta Part B 57, 1109-1113 (2002).
[CrossRef]

Rastelli, S.

Reis, N.

N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
[CrossRef]

Richardson, D. J.

Rieger, G. W.

Romero, D.

D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Samuels, A. C.

Sattmann, R.

R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
[CrossRef]

Scherbaum, F. J.

R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

Schwenke, H.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Singh, J.

Skipper, P. L.

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

Smith, B. W.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Soderberg, O.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

Song, Y.

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

Stokes, D. L.

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

Sturm, V.

R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
[CrossRef]

Takagi, F.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Takatani, S.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Taschuk, M. T.

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

G. W. Rieger, M. T. Taschuk, Y. T. Tsui, and R. Fedosejevs, "Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses," Appl. Spectrosc. 56, 689-698 (2002).
[CrossRef]

Telle, H. H.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Tognoni, E.

Trueba, K. E.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Tsui, Y. T.

Tsui, Y. Y.

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

Turner, P. W.

van del Poll, R. R.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

Watanabe, A.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Winefordner, J. D.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Yeung, E. S.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

N. H. Cheung and E. S. Yeung, "Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown," Appl. Spectrosc. 47, 882-886 (1993).
[CrossRef]

Young, J.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Yueh, F. Y.

Zayhowski, J. J.

J. J. Zayhowski, "Passively Q-switched microchip lasers and applications," Rev. Laser Eng. 26, 841-846 (1998).
[CrossRef]

J. J. Zayhowski and C. Dill, "Diode-pumped passvely Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

Anal. Chem.

J. Melin, H. Johansson, O. Soderberg, F. Nikolajeff, U. Landegren, M. Nilsson, and J. Jarvius, "Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation," Anal. Chem. 77, 7122-7130 (2005).
[CrossRef] [PubMed]

C. W. Ng and N. H. Cheung, "Detection of sodium and potassium in single human red blood cells by 193 nm laser ablative sampling: A feasibility demonstration," Anal. Chem. 72, 247-250 (2000).
[CrossRef] [PubMed]

N. H. Cheung and E. S. Yeung, "Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow," Anal. Chem. 66, 929-936 (1994).
[CrossRef] [PubMed]

S. J. Kim, Y. Song, P. L. Skipper, and J. Han, "Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip," Anal. Chem. 78, 8011-8019 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Appl. Surf. Sci.

N. H. Cheung, C. W. Ng, W. F. Ho, and E. S. Yeung, "Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions," Appl. Surf. Sci. 274, 127-129 (1998).

Crit. Rev. Anal. Chem.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Fundamentals and applications of laser-induced breakdown spectroscopy," Crit. Rev. Anal. Chem. 27, 257-290 (1997).
[CrossRef]

Fresenius J. Anal. Chem.

R. Knopp, F. J. Scherbaum, and J. I. Kim, "Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions," Fresenius J. Anal. Chem. 355, 16-20 (1996).
[CrossRef]

L. R. Allain, M. Askari, D. L. Stokes, and T. V. Dinh, "Microarray sampling-platform fabrication using bubble-jet technology for a biochip system," Fresenius J. Anal. Chem. 371, 146-150 (2001).
[CrossRef] [PubMed]

Hewlett-Packard J.

W. A. Buskirk, D. E. Hackleman, S. T. Hall, P. H. Kanarek, R. N. Low, K. E. Trueba, and R. R. van del Poll, "Development of high-resolution thermal ink jet printhead," Hewlett-Packard J.55-60 (1988).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

C. H. Lee and A. Lal, "Single microdroplet ejection using an ultrasonic longitudinal mode with PZT/tapered glass capillary," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1514-1522 (2004).
[CrossRef] [PubMed]

J. Anal. At. Spectrosc.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, "Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy," J. Anal. At. Spectrosc. 20, 552-556 (2005).
[CrossRef]

J. Appl. Phys.

N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," J. Appl. Phys. 97, 094903 (2005).
[CrossRef]

J. Imag. Sci. and Technol.

M. Fujii, T. Hamazaki, and K. Ikeda, "New thermal ink jet printhead with improved energy efficiency using silicon reactive ion etching," J. Imag. Sci. and Technol. 43, 332-338 (1999).

Lab on a Chip

G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, "Rapid prototyping of microfluidic devices with a wax printer," Lab on a Chip 7, 384-387 (2007).
[CrossRef] [PubMed]

Laser Part. Beams

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-103 (2008).

Opt. Eng.

O. Samek, D. C. S. Beddows, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, "Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples," Opt. Eng. 39, 2248-2262 (2000).
[CrossRef]

Opt. Lett.

Part B: Atomic Spectroscopy

Y. Godwal, S. L. LUI, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Determination of lead in water using laser ablation-laser induced fluorescence," Spectrochim. Acta, Part B: Atomic Spectroscopy 62, 1443-1447 (2007).
[CrossRef]

Proc. SPIE

R. Noll, R. Sattmann, and V. Sturm, "Laser-induced breakdown spectroscopy: a versatile tool for process control," Proc. SPIE 2248, 50-62 (1994).
[CrossRef]

Rev. Laser Eng.

J. J. Zayhowski, "Passively Q-switched microchip lasers and applications," Rev. Laser Eng. 26, 841-846 (1998).
[CrossRef]

Spectrochim Acta Part B

D. Romero and J. J. Laserna, "A microanalytical study of aluminum diffusion in photovoltaic cells using imaging-mode laser-induced breakdown spectrometry," Spectrochim Acta Part B 55, 1241-1248 (2000).
[CrossRef]

Spectrochim. Acta Part B

H. Hakkanen, J. Houni, S. Kaski, and J. E. I. Korppi-Tommola, "Analysis of paper by laser-induced plasma spectroscopy," Spectrochim. Acta Part B 56, 37-742 (2001).
[CrossRef]

L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta Part B 57, 1109-1113 (2002).
[CrossRef]

I. V. Cravetchi, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 59, 1439-1450 (2004).
[CrossRef]

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, "Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 60, 993-1001 (2005).
[CrossRef]

Tissue Eng.

M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, Y. Iwasaki, M. Horie, I. Morita, and S. Takatani, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Eng. 11, 1658-1666 (2005).
[CrossRef]

Other

V. N. Hoang, "Thermal Management Strategies for Microfluidic Devices," M.Sc thesis, Electrical and Computer Engineering, (University of Alberta, Edmonton, Canada 2008).

M. T. Taschuk, I. V. Cravetchi, Y. Y. Tsui, and R. Fedosejevs, "MicroLIBS," in Laser-Induced Breakdown Spectroscopy, J. P. Singh and N. S. Thakur, eds., Spectrochim. Acta Part B, Elsevier Science B. V. (Amsterdam, The Netherlands 2007).

Y. Ralchenko, F. C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, "National Institute of Standards and Technology, Gaithersburg, MD.," NIST Atomic Spectra Database (version 3.1.3), [Online], Available: http://physics.nist.gov/asd3 [2007, October 2001]. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Conceptual diagram showing the integration of µLIBS on a microfluidic platform that extrudes droplets and, (b). Assembled microchip architecture for continuous flow elemental analysis.

Fig. 2.
Fig. 2.

LIBS experimental set-up consisting of a frequency quadrupled Nd:YAG laser producing pulses up to ~260 µJ to ablates the microdroplet target. LIBS emission is observed along the laser axis.

Fig. 3.
Fig. 3.

Microbubble nucleation in action during the application of short electrical pulses. Nucleation process of a heater activated with a 14V 15µs pulse at different times, from left to right (a) t=-5 µs (before the start of the heating pulse); t=(b) 0; (c) 5 µs; (d) 10 µs; (e) 15 µs; (f) 20 µs and (g) 25 µs.

Fig. 4.
Fig. 4.

Droplet formation captured over a period of a 5 µs. Sequence of droplet formation using a 13V 5 µs pulse across a 60 Ω heater. The images were captured using the setup described in Fig. 2. Images from left to right show the bubble at (a) 1 µs; (b) 2 µs; (c) 3 µs; (d) 4 µs; and (e) 5 µs. A reflection of the partially extruded microdoplet from the PDMS surface is seen in the bottom of each image.

Fig. 5.
Fig. 5.

Single shot LIBS spectra on a micro-droplet. The pulse energy for ablation was 200 µJ, and the spectra were obtained at a gate width of 1 µs with gate delay varied: (a) 100 ns; (b) 200 ns; (c) 500 ns; and (d) 800 ns. The corresponding SNR are 11, 4, 2, and 0 respectively.

Fig. 6.
Fig. 6.

Multiple shots accumulation LIBS spectra on microdroplets. 100 shot accumulation LIBS spectra on micro-droplet. The gate delay was set at 100 ns.

Metrics