Abstract

We report the observation of photoluminescence produced by the recombination of free carriers generated via continuous-wave (CW) two-photon absorption (TPA) in a packaged, low-confinement (Γ~0.5%) InGaAsP/InP quantum-well slab-coupled optical waveguide amplifier (SCOWA) having a saturation output power of 0.8 W and 1/e-mode-field diameters of 5×7 μm. Photoluminescence power measured at the wavelength corresponding to the bandgap wavelength of the SCOWA’s InGaAsP waveguide (λG~1040 nm) exhibits a quadratic dependence on the amplifier’s 1540-nm output power. Comparison between measured and simulated CW gain saturation data reveals that the combination of TPA and TPA-generated free-carrier absorption (FCA) limits the CW output intensity of high-power, low-confinement semiconductor optical amplifiers and semiconductor lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
    [CrossRef]
  2. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
    [CrossRef]
  3. E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
    [CrossRef]
  4. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774 (2004).
    [CrossRef] [PubMed]
  5. J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
    [CrossRef]
  6. J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993).
    [CrossRef]
  7. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  8. F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
    [CrossRef]
  9. J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
    [CrossRef]
  10. P. W. Juodawlkis, J. J. Plant, L. J. Missaggia, K. E. Jensen, and F. J. O'Donnell, "Advances in 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifiers (SCOWAs)," in Proc. of the IEEE LEOS Annual Meeting, 2007.
  11. K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
    [CrossRef]
  12. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
    [CrossRef]
  13. T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004).
    [CrossRef]
  14. J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
    [CrossRef]
  15. A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.
  16. Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.
  17. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250-mW, 1.5-μm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223 (2006).
    [CrossRef] [PubMed]
  18. P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
    [CrossRef]
  19. H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
    [CrossRef]
  20. D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989).
    [CrossRef]
  21. P. W. Juodawlkis and J. J. Plant, "Gain-power trade-off in low-confinement semiconductor optical amplifiers," in Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2007.
  22. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439 (2001).
    [CrossRef]
  23. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10, 490 (1985).
    [CrossRef] [PubMed]

2006

2005

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

2004

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774 (2004).
[CrossRef] [PubMed]

T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004).
[CrossRef]

2001

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439 (2001).
[CrossRef]

2000

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

1996

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

1993

J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993).
[CrossRef]

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

1991

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

1989

D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989).
[CrossRef]

1985

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10, 490 (1985).
[CrossRef] [PubMed]

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

1981

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

1978

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

Ahmad, F. R.

Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Andreadakis, N. C.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Azema, A.

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

Baets, R.

D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989).
[CrossRef]

Bailey, R. J.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Berg, T. W.

T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004).
[CrossRef]

Betts, G. E.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Bhat, R.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Botineau, J.

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

Botteldooren, D.

D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989).
[CrossRef]

Bowers, J. E.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Bridges, T. P.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Burkhardt, E. G.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Burrus, C. A.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

Casperson, L. W.

J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993).
[CrossRef]

Chann, B.

Claps, R.

Connelly, M. J.

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439 (2001).
[CrossRef]

Dentai, A. G.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

Dimitropoulos, D.

Donnelly, J. P.

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Gires, F.

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

Gopinath, J. T.

Grant, R. S.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Groves, S. H.

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Hall, K. L.

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

Hemenway, B. R.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Huang, J.

J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993).
[CrossRef]

Huang, R. K.

J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250-mW, 1.5-μm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223 (2006).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

Ippen, E. P.

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.

Jalali, B.

Juodawlkis, P. W.

J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250-mW, 1.5-μm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223 (2006).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.

Kats, M. A.

Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Keramidas, V. G.

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

Koch, T. L.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Koyama, F.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

Koza, M. A.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Kuramata, A.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

LeBlanc, H. P.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Liou, K.-Y.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

Missaggia, L. J.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Morito, K.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

Mork, J.

T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004).
[CrossRef]

Motamedi, A.

A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.

Napoleone, A.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

O'Donnell, F. J.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Penty, R. V.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Plant, J. J.

J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250-mW, 1.5-μm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223 (2006).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.

Pollack, M. A.

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

Raghunathan, V.

Rana, F.

Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.

Ray, K. G.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

Ripin, D. J.

Saissy, A.

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

Sibbett, W.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Soileau, M. J.

Soole, J. B. D.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

Tanaka, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

Tanbun-ek, T.

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

Temkin, H.

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

Thoen, E. R.

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

Tomabechi, S.

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

Tsang, H. K.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Tseng, Y. W.

Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.

Van Stryland, E. W.

Vanherzeele, H.

Wagner, W. R.

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

Walpole, J. N.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

White, I. H.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

Wilt, D. P.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

Woodall, M. A.

Woodhouse, J. D.

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

Appl. Phys. Lett.

D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989).
[CrossRef]

Electron. Lett.

J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985).
[CrossRef]

IEEE J. Quantum Electron.

T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004).
[CrossRef]

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005).
[CrossRef]

F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993).
[CrossRef]

J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996).
[CrossRef]

E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000).
[CrossRef]

P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005).
[CrossRef]

K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005).
[CrossRef]

J. Appl. Phys

A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978).
[CrossRef]

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991).
[CrossRef]

H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993).
[CrossRef]

Other

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

P. W. Juodawlkis, J. J. Plant, L. J. Missaggia, K. E. Jensen, and F. J. O'Donnell, "Advances in 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifiers (SCOWAs)," in Proc. of the IEEE LEOS Annual Meeting, 2007.

A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.

Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.

P. W. Juodawlkis and J. J. Plant, "Gain-power trade-off in low-confinement semiconductor optical amplifiers," in Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photoluminescence measurement configuration comprising a lensed-fiber (LF) pigtailed slab-coupled optical waveguide amplifier (SCOWA) with associated DC current supply and TEC controller, a CW external-cavity laser (λ=1540 nm), a high-power erbium-doped fiber amplifier (EDFA), a variable attenuator (ATT), a polarization controller (PC), a power meter, an optical bandpass filter (λC=1000 nm, Δλ~100 nm), and an optical spectrum analyzer (OSA).

Fig. 2.
Fig. 2.

Filtered photoluminescence spectra generated by a packaged SCOWA as a function of amplified 1540-nm output power. With no 1540-nm input signal, the SCOWA produces 0.2 mW of broadband amplified spontaneous emission (ASE).

Fig. 3.
Fig. 3.

SCOWA photoluminescence power (squares) averaged from 1050 to 1060 nm as a function of the output power of the fundamental 1540-nm signal injected into and amplified by the device. Quadratic fit (solid line) also shown.

Fig. 4.
Fig. 4.

Measured (symbols) and simulated (dotted lines) fiber-to-fiber gain vs. output power of a packaged SCOWA at several DC bias currents.

Fig. 5.
Fig. 5.

Simulated SCOWA fiber-to-fiber gain vs. output power (i) with two-photon absorption (TPA) and TPA-generated free-carrier absorption (FCA) (blue dash-dot), (ii) with TPA only, and (iii) without any TPA-related effects.

Fig. 6.
Fig. 6.

Band-diagram schematic of multiple quantum well (MQW) p-i-n SCOWA structure depicting electronic carrier injection, stimulated emission of fundamental (1540 nm) signal, generation of carriers in the waveguide region via two-photon absorption (TPA), and 1040-nm radiative recombination of TPA-generated carriers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 2 = β TPA I S ( cm 1 )
dN TPA dt = α 2 I S hv N TPA τ 2 = β TPA I S 2 hv N TPA τ 2
N TPA = β TPA I S 2 τ 2 hv ( cm 3 )
α 2 FCA = σ 2 FCA N TPA = σ 2 FCA ( β TPA I S 2 τ 2 hv ) ( cm 1 )

Metrics