Abstract

We propose a new fiber design using both stress rods and air holes for making wide band single polarization fibers as well as polarization maintaining fibers. The key factor that makes the fiber design possible is that the stress-induced birefringence from the stress rods and the form birefringence from air holes are added constructively, which increases the total birefringence and allows more flexible choice of fiber parameters. We established a finite element model that is capable to study both the stress-optic effect and the wave-guide effect. Through the detailed modeling, we systematically explore the role of each major parameter. Different aspects of the fiber properties related to the fundamental mode cutoff, fiber birefringence and effective area are revealed. As a result, fibers with very large single polarization bandwidth as well as larger effective area are identified.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Nolan, G. E. Berkey, M.-J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, "Single-polarization fiber with a high extinction ratio," Opt. Lett. 29, 1855-1857 (2004).
    [CrossRef] [PubMed]
  2. D. A. Nolan, M.-J. Li, X. Chen, and J. Koh, "Single polarization fibers and applications," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Washington DC, 2006) OWA1.
  3. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13, 7621-7630 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7621.
    [CrossRef] [PubMed]
  4. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]
  5. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," Opt. Lett. 32, 358-360 (2007).
    [CrossRef] [PubMed]
  6. K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
    [CrossRef]
  7. Jun-Ichi Sakai and Tatsuya Kimura, "Birefringence Caused by Thermal Stress in Elliptically Deformed Core Optical Fibers," IEEE J. Quantum Electronics,  QE-18, 1899-1909 (1982).
    [CrossRef]
  8. M.-J. Li, Xin Chen, D.A. Nolan, G.E. Berkey, Ji Wang; W.A Wood, and L. A. Zenteno, "High bandwidth single polarization fiber with elliptical central air hole," J. Lightwave Technol.,  23, 3454-3460 (2005).
    [CrossRef]
  9. Z. Zhu and T. G. Brown, "Stress-induced Birefringence in Microstructured Optical Fibers," Opt. Lett. 28, 2306-2308 (2003).
    [CrossRef] [PubMed]
  10. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-Maintaining Fibers and Their Applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
    [CrossRef]

2007 (1)

2005 (3)

2004 (1)

2003 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-Maintaining Fibers and Their Applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

1982 (1)

Jun-Ichi Sakai and Tatsuya Kimura, "Birefringence Caused by Thermal Stress in Elliptically Deformed Core Optical Fibers," IEEE J. Quantum Electronics,  QE-18, 1899-1909 (1982).
[CrossRef]

1981 (1)

K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
[CrossRef]

Berkey, G. E.

Broeng, J.

Brown, T. G.

Chen, X.

Dong, L.

Edahiro, T.

K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
[CrossRef]

Folkenberg, J. R.

Hansen, K.

Hosaka, T.

K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
[CrossRef]

Iliew, R.

Jacobsen, C.

Jakobsen, C.

Lederer, F.

Li, M.-J.

Limpert, J.

Nielsen, M. D.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-Maintaining Fibers and Their Applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

Nolan, D. A.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-Maintaining Fibers and Their Applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
[CrossRef]

Peng, X.

Petersson, A.

Röser, F.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-Maintaining Fibers and Their Applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

Schmidt, O.

Schreiber, T.

Tünnermann, A.

Wood, W. A.

Xin Chen, M.-J.

Zenteno, L. A.

Zhu, Z.

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, and T. Edahiro, "Stress Analysis of Optical Fibers by a Finite Element Method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
[CrossRef]

IEEE J. Quantum Electronics (1)

Jun-Ichi Sakai and Tatsuya Kimura, "Birefringence Caused by Thermal Stress in Elliptically Deformed Core Optical Fibers," IEEE J. Quantum Electronics,  QE-18, 1899-1909 (1982).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (4)

Other (1)

D. A. Nolan, M.-J. Li, X. Chen, and J. Koh, "Single polarization fibers and applications," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Washington DC, 2006) OWA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of fiber design with air holes and stress rods.

Fig. 2.
Fig. 2.

Dependence of the cutoff wavelengths of two polarization modes on the core delta.

Fig. 3.
Fig. 3.

Cutoff wavelengths of both fundamental polarization modes as a function of the core radius.

Fig. 4.
Fig. 4.

(a). Birefringence at 1550nm as a function of stress rod Delta. (b) Cutoff wavelengths of both fundamental polarization modes as a function of Boron Delta.

Fig. 5.
Fig. 5.

Dependence of the cutoff wavelengths of both polarization modes on the air hole size. The air holes are positioned right next to the core.

Fig. 6.
Fig. 6.

Dependence of the cutoff wavelengths of both polarization modes on the separation between the core and the air holes.

Fig. 7.
Fig. 7.

Dependence of the cutoff wavelengths of both polarization modes on the core minor dimension.

Fig. 8.
Fig. 8.

(a) Dependence of the single polarization bandwidth as a function of the core delta with core radius adjusted to keep single polarization window at 1550nm. (b) Effective area of the corresponding fiber in (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ i = n i 2 n clad 2 2 n i 2
Δn x ( x , y ) = C 1 σ x ( x , y ) + C 2 σ y ( x , y )
Δ n y ( x , y ) = C 2 σ x ( x , y ) + C 1 σ y ( x , y )
n x ( x , y ) = n 0 x ( x , y ) + Δ n x ( x , y )
n y ( x , y ) = n 0 y ( x , y ) + Δ n y ( x , y ) .
B = n x , eff n y , eff

Metrics