Abstract

We successfully implemented laser beam wavefront correction on the 200 TW laser system at the Advanced Laser Light Source. Ultra high intensities in excess of 1020 W/cm2 have been demonstrated. This system is, to our knowledge, the first 100 TW class laser to combine simultaneously ultra high intensity, 109 laser pulse contrast ratio and 10 Hz high repetition

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
    [Crossref]
  2. A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
    [Crossref] [PubMed]
  3. S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
    [Crossref] [PubMed]
  4. L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
    [Crossref]
  5. S. P. D. Mangles and C. D. Murphy, et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535 (2004).
    [Crossref] [PubMed]
  6. C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
    [Crossref] [PubMed]
  7. J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
    [Crossref] [PubMed]
  8. S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
    [Crossref]
  9. J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
    [Crossref]
  10. S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
    [Crossref]
  11. S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
    [Crossref]
  12. J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
    [Crossref]
  13. L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
    [Crossref] [PubMed]
  14. A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
    [Crossref] [PubMed]
  15. R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
    [Crossref]
  16. H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
    [Crossref]
  17. F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
    [Crossref]
  18. B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
    [Crossref]
  19. S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
    [Crossref]
  20. V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
    [Crossref]
  21. Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
    [Crossref]
  22. J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
    [Crossref]
  23. A. V. Kudryashov and V. V. Samarkin, “Bimorph mirrors for correction and formation of laser beam,” Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

2008 (1)

V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
[Crossref]

2006 (2)

Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
[Crossref]

J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
[Crossref]

2005 (1)

R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
[Crossref]

2004 (8)

L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
[Crossref] [PubMed]

B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
[Crossref]

S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
[Crossref]

L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
[Crossref]

S. P. D. Mangles and C. D. Murphy, et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535 (2004).
[Crossref] [PubMed]

C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
[Crossref] [PubMed]

J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
[Crossref] [PubMed]

A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
[Crossref] [PubMed]

2003 (2)

S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
[Crossref]

J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
[Crossref]

2002 (3)

S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
[Crossref] [PubMed]

J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
[Crossref]

H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
[Crossref]

2001 (1)

S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
[Crossref]

2000 (2)

S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
[Crossref]

A. V. Kudryashov and V. V. Samarkin, “Bimorph mirrors for correction and formation of laser beam,” Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

1998 (1)

F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
[Crossref]

1997 (1)

A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
[Crossref] [PubMed]

1993 (1)

J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
[Crossref]

Akahane, Y.

Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
[Crossref]

Antici, P.

J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
[Crossref]

Back, S. W.

S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
[Crossref]

Baumhacker, H.

H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
[Crossref]

Brown, C. G.

S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
[Crossref]

Chaker, M.

J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
[Crossref]

Chen, L. M.

L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
[Crossref]

Chériaux, G.

F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
[Crossref]

Chvykov, V.

V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
[Crossref]

Cowan, T. E.

S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
[Crossref]

S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
[Crossref]

d’Humiéres, E.

J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
[Crossref]

Davies, J. R.

L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
[Crossref] [PubMed]

Druon, F.

F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
[Crossref]

Ewald, F.

J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
[Crossref]

Faure, J.

J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
[Crossref] [PubMed]

F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
[Crossref]

Forget, P.

L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
[Crossref]

Fourmaux, S.

R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
[Crossref]

L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
[Crossref]

Fritzler, S.

S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
[Crossref]

Fuchs, J,

B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
[Crossref]

Fuchs, J.

J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
[Crossref]

Fukuda, Y.

Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
[Crossref]

Geddes, C. G. R.

C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
[Crossref] [PubMed]

Glinec, Y.

J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
[Crossref] [PubMed]

Grillon, G.

S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
[Crossref]

Hatchett, S. P.

S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
[Crossref]

Ikhlef, A.

A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
[Crossref] [PubMed]

Jiang, Z.

J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
[Crossref]

Kalinchenko, G.

V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
[Crossref]

Kieffer, J. C.

R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
[Crossref]

J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
[Crossref]

A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
[Crossref] [PubMed]

J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
[Crossref]

Krol, A.

J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
[Crossref]

A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
[Crossref] [PubMed]

Kudryashov, A. V.

A. V. Kudryashov and V. V. Samarkin, “Bimorph mirrors for correction and formation of laser beam,” Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

Langdon, A. B.

S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
[Crossref]

Ma, J.

Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
[Crossref]

Magill, J.

J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
[Crossref]

Malka, V.

S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
[Crossref]

Mangles, S. P. D.

S. P. D. Mangles and C. D. Murphy, et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535 (2004).
[Crossref] [PubMed]

Marti, M.

L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
[Crossref] [PubMed]

Matte, J. P.

J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
[Crossref]

Mocek, T.

S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
[Crossref] [PubMed]

Murphy, C. D.

S. P. D. Mangles and C. D. Murphy, et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535 (2004).
[Crossref] [PubMed]

Phuoc, K.Ta

A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
[Crossref] [PubMed]

Planchon, T. A.

S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
[Crossref]

Pretzler, G.

H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
[Crossref]

Pukhov, A.

J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
[Crossref] [PubMed]

Ros, D.

S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
[Crossref] [PubMed]

Rousse, A.

A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
[Crossref] [PubMed]

Rousseau, P.

S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
[Crossref]

Samarkin, V. V.

A. V. Kudryashov and V. V. Samarkin, “Bimorph mirrors for correction and formation of laser beam,” Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

Schwoerer, H.

J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
[Crossref]

Sebban, S.

S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
[Crossref] [PubMed]

Shah, R.

A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
[Crossref] [PubMed]

Silva, L. O.

L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
[Crossref] [PubMed]

Toth, Cs.

C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
[Crossref] [PubMed]

Toth, R.

R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
[Crossref]

Van Tilborg, J.

C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
[Crossref] [PubMed]

Wattelier, B.

B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
[Crossref]

Wilks, S. C.

S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
[Crossref]

Witte, K. J.

H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
[Crossref]

Yanovsky, V.

V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
[Crossref]

Zou, J. P.

B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
[Crossref]

Appl. Phys (1)

J. Magill, H. Schwoerer, and F. Ewald, et al., “Laser transmutation of iodine-129,” Appl. Phys B  77, 387 (2003).
[Crossref]

Appl. Phys B (1)

J. C. Kieffer, A. Krol, and Z. Jiang, et al., “Future of laser-based hard X-ray sources for medical imaging,” Appl. Phys B 74, S75–81 (2002).
[Crossref]

Appl. Phys. Lett (1)

S. Fritzler, V. Malka, and G. Grillon, et al., “Proton beams generated with high-intensity lasers: Applications to medical isotope production,” Appl. Phys. Lett 83, 3039 (2003).
[Crossref]

Med. Phys (1)

A. Krol, A. Ikhlef, and J. C. Kieffer, et al., “Laser-based microfocused x-ray source for mammography: Feasibility study,” Med. Phys 24, 725 (1997).
[Crossref] [PubMed]

Nature (3)

S. P. D. Mangles and C. D. Murphy, et al., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535 (2004).
[Crossref] [PubMed]

C. G. R. Geddes, Cs. Toth, and J. Van Tilborg, et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538 (2004).
[Crossref] [PubMed]

J. Faure, Y. Glinec, and A. Pukhov, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541 (2004).
[Crossref] [PubMed]

Nature Physics (1)

J. Fuchs, P. Antici, and E. d’Humiéres, et al., “Laser-driven proton scaling laws and new paths towards energy increase,” Nature Physics 2, 48 (2006).
[Crossref]

Opt. Express (1)

V. Yanovsky, V. Chvykov, and G. Kalinchenko, et al., “Ultra-high intensity-300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2110 (2008).
[Crossref]

Opt. Lett (3)

H. Baumhacker, G. Pretzler, and K. J. Witte, et al., “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:Sapphire laser,” Opt. Lett 27, 1570 (2002).
[Crossref]

F. Druon, G. Chériaux, and J. Faure, et al., “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett 23, 1043 (1998).
[Crossref]

S. W. Back, P. Rousseau, and T. A. Planchon, et al., “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett 29, 2837 (2004).
[Crossref]

Phys. Fluids B (1)

J. C. Kieffer, M. Chaker, and J. P. Matte, et al., “Ultrafast x-ray sources,” Phys. Fluids B 5, 2676 (1993).
[Crossref]

Phys. of Plasmas (1)

L. M. Chen, P. Forget, and S. Fourmaux, et al., “Study of hard x-ray emission from intense femtosecond Ti:Sapphire laser-solid target interactions,” Phys. of Plasmas 11, 4439 (2004).
[Crossref]

Phys. Plasmas (2)

S. P. Hatchett, C. G. Brown, and T. E. Cowan, et al., “Electron, photon, and ion beams from the relativistic interaction of Petawatt laser with solid targets,” Phys. Plasmas 7, 2076 (2000).
[Crossref]

S. C. Wilks, A. B. Langdon, and T. E. Cowan, et al., “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8, 542 (2001).
[Crossref]

Phys. Rev. Lett (2)

A. Rousse, K.Ta Phuoc, and R. Shah, et al., “Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction,” Phys. Rev. Lett 93,135005 (2004).
[Crossref] [PubMed]

S. Sebban, T. Mocek, and D. Ros , et al., “Demonstration of a Ni-Like Kr Optical-Field-Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett 89, 253901 (2002).
[Crossref] [PubMed]

L. O. Silva, M. Marti, and J. R. Davies, et al., “Proton Shock Acceleration in Laser-Plasma Interactions,” Phys. rev. Lett 92, 015002 (2004).
[Crossref] [PubMed]

Rev. Sci. Instrum (3)

R. Toth, J. C. Kieffer, and S. Fourmaux et al., “In-line phase-contrast imaging with a laser-based hard x-ray source,” Rev. Sci. Instrum 76, 083701 (2005).
[Crossref]

B. Wattelier, J, Fuchs, and J. P. Zou, et al., “High-power short pulse laser repetition rate improvement by adaptive wave front correction,” Rev. Sci. Instrum 75, 5186 (2004).
[Crossref]

Y. Akahane, J. Ma, and Y. Fukuda, et al., “Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2,” Rev. Sci. Instrum 77, 023102 (2006).
[Crossref]

Other (1)

A. V. Kudryashov and V. V. Samarkin, “Bimorph mirrors for correction and formation of laser beam,” Proc. 2nd Int. Workshop on Adaptive Optics for industry and Medicine, Durham, England, Ed. G. Love, 193, World Scientific (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1. (a).
Fig. 1. (a).

Laser beam spectrum after compression. The FWHM bandwidth is 55 nm and 72 nm at 1/e2 of the maximum; (b). Laser pulse duration measured with a SPIDER technique. On this picture the FWHM pulse duration is 22 fs (orange line) and the autocorrelator trace is 33 fs (yellow line); (c). Laser pulse contrast measured with a third order high contrast autocorrelator; (d). Laser beam near field after compression. The beam is 95 × 100 mm diameter FWHM. The cut on the left side of the picture is due to the grating during the compression process. The beam distribution is a top hat shape with some features characteristic of large beam pumped by a large number of YAG lasers.

Fig. 2.
Fig. 2.

Schematic experimental setup. The laser beam is represented by the red lines and the direction of propagation is indicated by the arrow (in the compression chamber the optical path between the gratings occurs on two vertical levels). M, high reflectivity mirror; G, compressor gratings; CC, corner cube (beam elevator); DM, deformable mirror; OAP, off-axis parabola; RW, removable wedge; TCC, target chamber center; MO, microscope objective; L1, f=+1 m, aspheric lens; L2=+40 mm, biconvex lens, CCD, far-field monitor CCD; WFS, wave-front sensor.

Fig. 3.
Fig. 3.

(a). Phase map without any correction (no applied voltage on the deformable mirror electrodes). RMS wavefront value is 0.471 λ; (b). Laser beam focal spot measured with 50× magnification optical system. The laser spot size is 8.6 × 14.8 μm2 at 1/e2 of the laser beam peak intensity. The corresponding ellipse includes 52% of the energy.

Fig. 4.
Fig. 4.

(a) Phase map with correction (voltage corresponding to the close loop retroaction algorithm are applied on the deformable mirror electrodes). RMS wavefront value is 0.063; (b). Laser beam focal spot measured with ×50 magnification optical system. The laser spot size is 7 × 7.8 μm2 at the 1/e2 of the laser beam peak intensity. The corresponding ellipse includes 50.8% of the energy.

Tables (1)

Tables Icon

Table 1. Evolution of the Zernike polynomial coefficients before and after correction of the wavefront by the deformable mirror. The Zernike polynomial coefficient corresponds respectively to the defocusing (number 3), the astigmatism along the off axis parabola wedge (number 4), the astigmatism at 45 degree of the off axis parabola wedge (number 5), the horizontal coma (number 6), the vertical coma (number 7) and the spherical aberration (number 8).

Metrics