Abstract

A low-cost and high-throughput method for the fabrication of large-area ordered hybrid metallic nanostructure arrays is presented. Each structure unit is a nanobowl with a hexagonal distributed pillar array upon it. A self-assembled monolayer of polystyrene (PS) nanospheres is used as a template. After thermal evaporation, electroforming and removal of the nanospheres and the conductive layer, ordered arrays of hybrid nickel nanostructures have been fabricated. Both nanobowl arrays and pillar arrays exhibit uniform sizes. Smooth interior surfaces were observed in the nanobowl arrays. The geometry of the structure can be tuned by controlling the thickness of the conductive layer. The approach presented in this paper can be extended to fabricate ordered hybrid nanostructures of a wide range of metals and alloys with controlled size.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
    [CrossRef] [PubMed]
  2. C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
    [CrossRef]
  3. A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
    [CrossRef] [PubMed]
  4. K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
    [CrossRef] [PubMed]
  5. M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
    [CrossRef] [PubMed]
  6. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
    [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and non-adiabatic nano-focusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett.  89, 041111/1-4 (2006).
  8. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
    [CrossRef] [PubMed]
  9. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  11. J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
    [CrossRef]
  12. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
    [CrossRef]
  13. T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000).
    [CrossRef] [PubMed]
  14. A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
    [CrossRef]
  15. X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
    [CrossRef]
  16. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
    [CrossRef] [PubMed]
  17. C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
    [CrossRef]
  18. X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
    [CrossRef]
  19. R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
    [CrossRef]
  20. W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
    [CrossRef]

2007 (5)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
[CrossRef]

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
[CrossRef]

2005 (1)

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

2004 (3)

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

2003 (1)

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

2002 (2)

A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

2000 (1)

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000).
[CrossRef] [PubMed]

1997 (1)

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

1996 (2)

R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
[CrossRef]

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Bartenlian, B.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Buncher, J.-P.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Chan, V. Z. H.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Chappert, C.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Chen, H.-Y.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Chen, P.

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

Cheng, J. Y.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

Cho, Y.

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

Decanini, D.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
[CrossRef]

Duyne, R. P. V.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Fukuda, H.

R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Graugnard, E.

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Hehn, M.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Hong, H.-G.

C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
[CrossRef]

Hong, M. H.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Ito, T.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000).
[CrossRef] [PubMed]

King, J. S.

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
[CrossRef]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Kuo, C.

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

Laluet, J. Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lamertink, R. G. H.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

Lee, K.-B.

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

Lehmann, O.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

Lim, G. H.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Liu, B.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Ma, X.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Madhavi, S.

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

Micheletto, R.

R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
[CrossRef]

Mirkin, C. A.

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

Mrksich, M.

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

Muller, K.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

Ohtsut, M.

R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
[CrossRef]

Okazaki, S.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000).
[CrossRef] [PubMed]

Ounadjela, K.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Park, S.-J.

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

Pile, D. F. P.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

Ramanujan, R. V.

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

Ross, C. A.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

Rousseaux, F.

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Sheng, D.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Shin, C.

C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
[CrossRef]

Shin, W.

C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
[CrossRef]

Shiu, J.

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

Smirth, J. C.

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

Song, W. D.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Srivastava, A. K.

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

Stuke, M.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

Summers, C. J.

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

Sun, C.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

Thomas, E. L.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

van Duyne, R. P.

A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

Vancso, G. J.

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wang, S.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

Wang, W. J.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Wang, X.

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

Wang, X.-Y.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Wang, Z.

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

Wanke, M. C.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

Wen, Q.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

White, T. J.

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

Xu, J.-J.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Ye, K. D.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Yuan, J.-H.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Zhang, X.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

Zhong, H.

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Zhou, J.

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Adv. Mater. (3)

C. Kuo, J. Shiu, Y. Cho, and P. Chen, "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Adv. Mater. 15, 1065-1068 (2003).
[CrossRef]

J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lamertink, and G. J. Vancso, "Fabrication of nanopatterned thin films using self-assembled block copolymer lithography," Adv. Mater. 13, 1174-8 (2001).
[CrossRef]

J. Dintinger, S. Klein, and T. W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching," Adv. Mater. 18, 1267-1270 (2006).
[CrossRef]

Chem. Lett. (1)

X.-Y. Wang, H. Zhong, J.-H. Yuan, D. Sheng, X. Ma, J.-J. Xu, and H.-Y. Chen, "Direct Electrochemical Fabrication of Metallic Nanopillar Array on Au Electrode Surface by the Template Technique," Chem. Lett. 33, 982-985 (2004).
[CrossRef]

Electrochimica Acta (1)

C. Shin, W. Shin, and H.-G. Hong, "Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor," Electrochimica Acta 53, 720-728 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, "Template assisted assembly of cobalt nanobowl arrays," J. Mater. Chem. 15, 4424-4428 (2005).
[CrossRef]

J. Phys.: Conference Series (1)

W. J. Wang, G. H. Lim, W. D. Song, K. D. Ye, J. Zhou, M. H. Hong, and B. Liu, "Laser induced nanobump array on magnetic glass disk for low flying height application," J. Phys.: Conference Series 59, 177-180 (2007).
[CrossRef]

Langmuir (1)

R. Micheletto, H. Fukuda, and M. Ohtsut, "A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles," Langmuir 11, 3333-3336 (1996).
[CrossRef]

Nano Lett. (4)

X. Wang, E. Graugnard, J. S. King, Z. Wang, and C. J. Summers, "Large-scale fabrication of ordered nanobowl arrays," Nano Lett. 4, 2223-2226 (2004).
[CrossRef]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, "Nanopin plasmonic resonator array and its optical properties," Nano Lett. 7, 1076-1080 (2007).
[CrossRef] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, "A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007).
[CrossRef] [PubMed]

Nature (3)

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031(2000).
[CrossRef] [PubMed]

Science (3)

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science 275, 1284-1286 (1997).
[CrossRef] [PubMed]

K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smirth, and M. Mrksich, "Protein nanoarrays generated by dip-pen nanolithography," Science 295, 1702-1705 (2002).
[CrossRef] [PubMed]

M. Hehn, K. Ounadjela, J.-P. Buncher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, "Nanoscale magnetic domains in mesoscopic magnets," Science 272, 1782-1785 (1996).
[CrossRef] [PubMed]

Other (1)

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and non-adiabatic nano-focusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett.  89, 041111/1-4 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Process flow chart of the fabrication of large-area ordered metallic nanostructures arrays. a) The silicon substrate is coated with a monolayer of PS spheres. b) A thin conductive layer is deposited on top of the PS spheres by thermal evaporation. c) A thick metal sheet is electrochemically deposited on top of the conductive layer. d) After removal of PS spheres and the conductive layer, periodic nanostructure arrays of the desired material are obtained.

Fig. 2.
Fig. 2.

SEM images of nanostructures during the fabrication process. (a) Monolayer self-assembly of PS spheres on silicon substrates. (b) Nanobowl arrays after PS spheres are removed, and the inset shows the EDS spectra recorded from the nanostructures. (c) Nickel nanobowl array after gold film is removed, and the inset is the high magnification image. (d) Nickel nanostructure arrays with a tilt angle of 45°, hexagonal distributed nickel nanopillars on the top of nanobowls can be clearly seen. The inset is the cross section with a tilt angle of 45°.

Fig. 3.
Fig. 3.

The tuning of conductive layer thickness on the geometry of the metallic nanostrucutres. (a) The effect of conductive layer thickness on the nanobowl profile. (b) The in-plane metallic pillar size depends on the voids between nanospheres.

Fig. 4.
Fig. 4.

PDMS nanolens array with a tilt angle of 30°.

Metrics