Abstract

We demonstrate a new Fourier pulse shaping apparatus capable of achieving simultaneous high resolution and broad bandwidth operation by dispersing frequency components in a two dimensional geometry through simultaneous use of a high resolution and a broad bandwidth spectral disperser. We show experimental results which demonstrate significant improvements in achievable waveform complexity (number of controllable temporal/spectral features). We also demonstrate experiments of line-by-line pulse shaping with optical frequency combs. In this regime our configuration would allow significant enhancement of the number of controllable spectral lines which may further enhance recently demonstrated massively parallel approaches to spectroscopic sensing using frequency combs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
    [CrossRef]
  2. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
    [CrossRef]
  3. J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Top. Quantum Electron. 13, 1351-1369 (2007).
    [CrossRef]
  4. G-H. Lee, S. Xiao, and A. M. Weiner. "Optical Dispersion Compensator with >4000 ps/nm Tuning Range using a Virtually Imaged Phase Array (VIPA) and Spatial Light Modulator," IEEE Phot. Tech. Lett,  18, 1819-1821 (2006).
    [CrossRef]
  5. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
    [CrossRef] [PubMed]
  6. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  7. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
    [CrossRef] [PubMed]
  8. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  9. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
    [CrossRef] [PubMed]
  10. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and it�??s application to a wavelength division multiplexer," Opt. Lett. 21, 366-368 (1996).
    [CrossRef]
  11. S. Xiao and A. M. Weiner, "2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band," Opt. Express 12, 2895-2902 (2004).
    [CrossRef] [PubMed]
  12. S. X. Wang, S. Xiao, and A. M. Weiner. "Broadband, High Spectral Resolution 2-D Wavelength-Parallel Polarimeter for Dense WDM Systems," Opt. Express 13, 9374-9380 (2005).
    [CrossRef] [PubMed]
  13. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
    [CrossRef] [PubMed]
  14. http://www.holoeye.com/phase_only_modulator_heo1080p.html
  15. T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson. "Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping," Opt. Lett. 29, 2052-2054 (2004).
    [CrossRef]
  16. R. P. Scott, W. Cong, V. J. Hernandez, K. Li, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "An Eight-User Time-Slotted SPECTS O-CDMA Testbed: Demonstration and Simulations," J. Lightwave Technol.  23, 3232- (2005).
    [CrossRef]
  17. E. Frumker and Y. Silberberg, "Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator," Opt. Lett. 32, 1384 (2007).
    [CrossRef] [PubMed]
  18. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
    [CrossRef]
  19. V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, "New aspects of temporal dispersion in virtually imaged phased array (VIPA) based Fourier pulse shapers," CThDD3, CLEO 2008.
  20. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line by line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
    [CrossRef]
  21. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  22. T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  23. M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
    [CrossRef] [PubMed]
  24. A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
    [CrossRef] [PubMed]
  25. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
    [CrossRef]
  26. R. P. Scott, N. K. Fontaine, J. Cao, K. Okamoto, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "High-fidelity line-by-line optical waveform generation and complete characterization using FROG," Opt. Express 15, 9977-9988 (2007).
    [CrossRef] [PubMed]
  27. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
    [CrossRef]
  28. A. W. Lohmann and D. P. Paris, "Binary Fraunhofer holograms, generated by computer," Appl. Opt. 6, 1739 (1967).
    [CrossRef] [PubMed]
  29. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
    [CrossRef]
  30. J. W. Wilson, P. Schlup, and R. A. Bartels. "Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask," Opt. Express 15, 8979 - 8988 (2007).
    [CrossRef] [PubMed]

2007 (6)

J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Top. Quantum Electron. 13, 1351-1369 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

E. Frumker and Y. Silberberg, "Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator," Opt. Lett. 32, 1384 (2007).
[CrossRef] [PubMed]

J. W. Wilson, P. Schlup, and R. A. Bartels. "Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask," Opt. Express 15, 8979 - 8988 (2007).
[CrossRef] [PubMed]

R. P. Scott, N. K. Fontaine, J. Cao, K. Okamoto, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "High-fidelity line-by-line optical waveform generation and complete characterization using FROG," Opt. Express 15, 9977-9988 (2007).
[CrossRef] [PubMed]

2006 (4)

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

G-H. Lee, S. Xiao, and A. M. Weiner. "Optical Dispersion Compensator with >4000 ps/nm Tuning Range using a Virtually Imaged Phase Array (VIPA) and Spatial Light Modulator," IEEE Phot. Tech. Lett,  18, 1819-1821 (2006).
[CrossRef]

2005 (2)

2004 (3)

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

2001 (2)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

2000 (3)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1996 (1)

1992 (1)

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

1990 (1)

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

1988 (1)

1967 (1)

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Bartels, R. A.

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Cao, J.

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Cruz, F.

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Felinto, D.

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Feurer, T.

Fontaine, N. K.

Frumker, E.

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Heritage, J. P.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hornung, T.

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line by line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Kirschner, E. M.

Kolner, B. H.

Kurokawa, T.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Lawall, J.

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Leaird, D. E.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line by line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
[CrossRef]

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Lee, G-H.

G-H. Lee, S. Xiao, and A. M. Weiner. "Optical Dispersion Compensator with >4000 ps/nm Tuning Range using a Virtually Imaged Phase Array (VIPA) and Spatial Light Modulator," IEEE Phot. Tech. Lett,  18, 1819-1821 (2006).
[CrossRef]

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Lohmann, A. W.

Mandai, K.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Marian, A.

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Miyamoto, D.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Nelson, K. A.

T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson. "Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping," Opt. Lett. 29, 2052-2054 (2004).
[CrossRef]

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Okamoto, K.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Paek, E. G.

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

Paris, D. P.

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Reitze, D. H.

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

Schlup, P.

Scott, R. P.

Seo, D. S.

Shioda, T.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Shirasaki, M.

Silberberg, Y.

E. Frumker and Y. Silberberg, "Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator," Opt. Lett. 32, 1384 (2007).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Stowe, M. C.

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Takeda, S.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Tsuda, H.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Vaughan, J. C.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Wang, S. X.

Weiner, A. M.

J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Top. Quantum Electron. 13, 1351-1369 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

G-H. Lee, S. Xiao, and A. M. Weiner. "Optical Dispersion Compensator with >4000 ps/nm Tuning Range using a Virtually Imaged Phase Array (VIPA) and Spatial Light Modulator," IEEE Phot. Tech. Lett,  18, 1819-1821 (2006).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

S. X. Wang, S. Xiao, and A. M. Weiner. "Broadband, High Spectral Resolution 2-D Wavelength-Parallel Polarimeter for Dense WDM Systems," Opt. Express 13, 9374-9380 (2005).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line by line pulse shaping," Opt. Lett. 30, 1557-1559 (2005).
[CrossRef]

S. Xiao and A. M. Weiner, "2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band," Opt. Express 12, 2895-2902 (2004).
[CrossRef] [PubMed]

Weiner, M.

M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988).
[CrossRef]

Wiederrecht, G. P.

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Wilson, J. W.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Xiao, S.

Ye, J.

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

Yoo, S. J. B.

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Electron. Lett. (1)

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-Rate Femtosecond Pulse Generation via Line-by-Line Processing of a Phase-Modulated CW Laser Frequency Comb," Electron. Lett. 42, 1114-1115 (2006).
[CrossRef]

IEEE J. Quantum Electron (1)

M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, "Femtosecond spectral holography," IEEE J. Quantum Electron 28, 2251 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. P. Heritage and A. M. Weiner, "Advances in spectral optical code-division multiple-access communications," IEEE J. Sel. Top. Quantum Electron. 13, 1351-1369 (2007).
[CrossRef]

IEEE Phot. Tech. Lett (1)

G-H. Lee, S. Xiao, and A. M. Weiner. "Optical Dispersion Compensator with >4000 ps/nm Tuning Range using a Virtually Imaged Phase Array (VIPA) and Spatial Light Modulator," IEEE Phot. Tech. Lett,  18, 1819-1821 (2006).
[CrossRef]

IEEE Photon. Technol. Letters. (1)

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-Controllable Optical Pulse Generation Using an Optical Pulse Synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical Arbitrary Waveform Processing of More than 100 Spectral Comb Lines," Nat. Photonics 1, 463-467 (2007).
[CrossRef]

Nature (5)

T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

M. C. Stowe, F. Cruz, A. Marian, and J. Ye. "High Resolution Atomic Coherent Control via Spectral Phase Manipulation of an Optical Frequency Comb," Phys. Rev. Lett. 96, 153001 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instr. (1)

M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

Science (4)

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson. "Femtosecond pulse sequences used for optical manipulation of molecular-motion," Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye. "United Time-Frequency Spectroscopy for Dynamics and Global Structure," Science 306, 2063-2068 (2004).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (3)

V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, "New aspects of temporal dispersion in virtually imaged phased array (VIPA) based Fourier pulse shapers," CThDD3, CLEO 2008.

http://www.holoeye.com/phase_only_modulator_heo1080p.html

R. P. Scott, W. Cong, V. J. Hernandez, K. Li, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "An Eight-User Time-Slotted SPECTS O-CDMA Testbed: Demonstration and Simulations," J. Lightwave Technol.  23, 3232- (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The experimental setup - after undergoing dispersion by the VIPA (free spectral range (FSR) of 200GHz) and the grating (940lines/mm) in perpendicular directions, and spatial Fourier transforms by the respective lenses, the light forms a 2D pattern on the Fourier plane where a patterned mask shapes the input spectrum. An adjustable fraction of the light is diverted to an imaging camera for aligning and monitoring the mask.

Fig. 2.
Fig. 2.

(a) Image of the Fourier plane without a mask, (b), with a mask.

Fig. 3.
Fig. 3.

(a), the full spectrum of the shaped pulse. (b), magnified portion of the spectrum circled in red in Fig. 3(a). The smallest features are 5GHz, and over a bandwidth of 8THz (> 64nm), there are more than 1600 controllable spectral features. (c), time domain cross correlation trace. An initially bandwidth limited pulse of 150fs is shaped over a time window exceeding 200ps.

Fig. 4.
Fig. 4.

(a), images of the Fourier plane for the two halves of the mask; the corresponding spectra are shown in (b). The smallest spectral feature is 10GHz and the total number of features in either spectra is around 450. To better represent the features determined by the mask, both spectra are split into three sections, each consisting a few FSRs of the VIPA. Each section is then plotted in segments of one FSR (200 GHz) lined vertically as shown in (c). The clear correspondence between the applied mask and the spectrum demonstrates enhanced spectral control made possible by the ability to control fine spectral features over a large bandwidth.

Fig. 5.
Fig. 5.

(a) a portion of the input frequency comb and the same section after application of a pulse rate quadrupling mask. The line-to-line spectral spacing of the input is 10GHz, which is the temporal repetition rate of the source. After application of the mask, the line-to-line spacing is manipulated to be 40GHz. (b), the image of the Fourier plane with the quadrupling mask and the corresponding time domain cross correlation trace. The pulse-to-pulse separation is 25ps corresponding to the 40GHz repetition rate. (c), a pulse rate doubling experiment. The image of the Fourier plane shows spot-to-spot separation equal to half of that shown in (b), corresponding to a frequency comb of 20GHz separation. In the time domain the pulse-to-pulse separation is 50ps as expected. In D, a mask is utilized which is a slight modification of the pulse rate doubling mask. This is indicated by the spot-to-spot separation being similar to C, but the pattern is staggered by inserted irregularities every 20 spectral lines. In the time domain this results in a significant change, where a double pulse structure is observed near zero delay instead of a single pulse as in the pulse rate doubling case (c). Excellent agreement between the simulated (red) and the experimental (blue) cross correlation traces is observed.

Fig. 6.
Fig. 6.

An experimental cross correlation trace (solid blue) and the simulated (dashed red) trace are superimposed; excellent agreement between the two traces is observed. Both satellite pulses have been broadened, indicating a quadratic spectral phase with the acquired tail indicating a cubic spectral phase. The image on the inset shows the Fourier plane with the mask in place.

Metrics