Abstract

In this work, we report the spectroscopic properties of the infrared 3H43F4 emission of Tm3+ ions in two different compositions of glasses based on TeO2, WO3, and PbO for three Tm2O3 concentrations (0.1, 0.5, and 1 wt%). Judd-Ofelt intensity parameters have been determined and used to calculate the radiative transition probabilities and radiative lifetimes. The infrared emission at around 1490 nm corresponding to the 3H43F4 transition has two noticeable features if compared to fluoride glasses used for S-band amplifiers. On one hand, it is broader by nearly 30 nm, and on the other, the stimulated emission cross section is twice the value for fluoride glasses. Both the relative intensity ratio of the 1490 nm emission to 1820 nm and the measured lifetime of the 3H4 level decrease as concentration increases, due to the existence of energy transfer via cross-relaxation among Tm3+ ions. The analysis of the decays from the 3H4 level with increasing concentration indicates the presence of a dipole-dipole quenching process assisted by energy migration.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
    [CrossRef]
  2. S. Tanabe, X. Feng, and T. Hanada, "Improved emission of Tm3+-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm3+ and Nd3+," Opt. Lett. 25, 817-819 (2000).
    [CrossRef]
  3. J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007).
    [CrossRef] [PubMed]
  4. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
    [CrossRef]
  5. R. A. H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001).
    [CrossRef]
  6. S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
    [CrossRef]
  7. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
    [CrossRef]
  8. S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005).
    [CrossRef] [PubMed]
  9. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
    [CrossRef]
  10. S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
    [CrossRef]
  11. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
    [CrossRef]
  12. A. Mori, "1.58-μm Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
    [CrossRef]
  13. R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
    [CrossRef]
  14. I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
    [CrossRef]
  15. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "Efficient 2 μm Tm3+-doped tellurite fiber laser," Opt. Lett. 33, 402-404 (2008).
    [CrossRef] [PubMed]
  16. N. V. Ovcharenko and T. V. Smirnova, "High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO," J. Non-Cryst. Solids 291, 121-126 (2001).
    [CrossRef]
  17. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  18. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
    [CrossRef]
  20. V. Dimitrov and T. Komatsu, "Classification of Simple Oxides: A Polarizability Approach," J. Solid State Chem. 163, 100-112 (2002).
    [CrossRef]
  21. R. Balda, J. Fernández, S. García-Revilla, J. M. Fdez-Navarro, "Spectroscopy and concentration quenching of the infrared emission in Tm3+-doped TeO2-TiO2Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
    [CrossRef] [PubMed]
  22. C. K. Jorgensen and R. Reisfeld, "Judd-Ofelt parameters and chemical bonding," J. Less-Common Met. 93, 107-112 (1983).
    [CrossRef]
  23. G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
    [CrossRef]
  24. M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
    [CrossRef]
  25. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
    [CrossRef]
  26. M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
    [CrossRef]
  27. M. Naftaly, S. Shen, and A. Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm," Appl. Opt. 39, 4979-4984 (2000).
    [CrossRef]
  28. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
    [CrossRef]
  29. M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
    [CrossRef]
  30. M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  31. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
    [CrossRef]
  32. A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35,882-885 (1972).
  33. Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
    [CrossRef]
  34. A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
    [CrossRef]

2008 (2)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "Efficient 2 μm Tm3+-doped tellurite fiber laser," Opt. Lett. 33, 402-404 (2008).
[CrossRef] [PubMed]

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

2007 (4)

R. Balda, J. Fernández, S. García-Revilla, J. M. Fdez-Navarro, "Spectroscopy and concentration quenching of the infrared emission in Tm3+-doped TeO2-TiO2Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
[CrossRef]

2003 (3)

Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

2002 (2)

V. Dimitrov and T. Komatsu, "Classification of Simple Oxides: A Polarizability Approach," J. Solid State Chem. 163, 100-112 (2002).
[CrossRef]

A. Mori, "1.58-μm Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

2001 (1)

N. V. Ovcharenko and T. V. Smirnova, "High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO," J. Non-Cryst. Solids 291, 121-126 (2001).
[CrossRef]

2000 (2)

1999 (2)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

1998 (2)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

1990 (2)

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

1983 (1)

C. K. Jorgensen and R. Reisfeld, "Judd-Ofelt parameters and chemical bonding," J. Less-Common Met. 93, 107-112 (1983).
[CrossRef]

1982 (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

1972 (1)

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35,882-885 (1972).

1971 (1)

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

1967 (2)

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

1962 (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

??zen, G.

A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
[CrossRef]

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Al-Saleh, M.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

Arriandiaga, M. A.

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

Aydinli, A.

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

Azkargorta, J.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Balda, R.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

R. Balda, J. Fernández, S. García-Revilla, J. M. Fdez-Navarro, "Spectroscopy and concentration quenching of the infrared emission in Tm3+-doped TeO2-TiO2Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
[CrossRef] [PubMed]

Binks, D.

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35,882-885 (1972).

Cardinal, T.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Cenk, S.

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

Chung, P. S.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Couzi, M.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Dimitrov, V.

V. Dimitrov and T. Komatsu, "Classification of Simple Oxides: A Polarizability Approach," J. Solid State Chem. 163, 100-112 (2002).
[CrossRef]

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Fdez-Navarro, J. M.

Feng, X.

Fernández, J.

R. Balda, J. Fernández, S. García-Revilla, J. M. Fdez-Navarro, "Spectroscopy and concentration quenching of the infrared emission in Tm3+-doped TeO2-TiO2Nb2O5 glass," Opt. Express 15, 6750-6761 (2007).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Fernández-Navarro, J.

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

Fernández-Navarro, J. M.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Furniss, D.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

García-Revilla, S.

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Han, Y. S.

Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Hanada, T.

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Heo, J.

Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Hirao, K.

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Hirao, Kazuyuki

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Huang, L.

Iparraguirre, I.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Jha, A.

Jiang, S.

Jorgensen, C. K.

C. K. Jorgensen and R. Reisfeld, "Judd-Ofelt parameters and chemical bonding," J. Less-Common Met. 93, 107-112 (1983).
[CrossRef]

Joshi, P.

Judd, B. R.

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Komatsu, T.

V. Dimitrov and T. Komatsu, "Classification of Simple Oxides: A Polarizability Approach," J. Solid State Chem. 163, 100-112 (2002).
[CrossRef]

Kurt, A.

A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
[CrossRef]

Lousteau, J.

Man, S. Q.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Mori, A.

A. Mori, "1.58-μm Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Naftaly, M.

Narazaki, Aiko

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

O???Donnell, M. D.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Ohishi, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Ono, H.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Ovcharenko, N. V.

N. V. Ovcharenko and T. V. Smirnova, "High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO," J. Non-Cryst. Solids 291, 121-126 (2001).
[CrossRef]

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Pun, E. Y. B.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Reisfeld, R.

C. K. Jorgensen and R. Reisfeld, "Judd-Ofelt parameters and chemical bonding," J. Less-Common Met. 93, 107-112 (1983).
[CrossRef]

Richards, B.

Richardson, K.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Rivero, C.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Seddon, A. B.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Sennarglu, A.

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
[CrossRef]

Shen, S.

Shin, Y. B.

Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Smirnova, T. V.

N. V. Ovcharenko and T. V. Smirnova, "High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO," J. Non-Cryst. Solids 291, 121-126 (2001).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Soga, N.

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Soga, Naohiro

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Stolen, R.

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Tanabe, S.

S. Tanabe, X. Feng, and T. Hanada, "Improved emission of Tm3+-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm3+ and Nd3+," Opt. Lett. 25, 817-819 (2000).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Tanaka, Katsuhisa

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

Tsang, Y.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

Wu, J.

Yamada, M.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Yao, Z.

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

Zong, J.

J. Lightwave Technol. (1)

A. Mori, "1.58-μm Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

J. Appl. Phys. (2)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

J. Chem. Phys. (2)

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

J. Less-Common Met. (1)

C. K. Jorgensen and R. Reisfeld, "Judd-Ofelt parameters and chemical bonding," J. Less-Common Met. 93, 107-112 (1983).
[CrossRef]

J. Lumin. (1)

G. �?zen, A. Aydinli, S. Cenk, and A. Sennarglu, "Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2-WO3 glass," J. Lumin. 101, 293-306 (2003)
[CrossRef]

J. Non-Cryst. Solids (4)

N. V. Ovcharenko and T. V. Smirnova, "High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO," J. Non-Cryst. Solids 291, 121-126 (2001).
[CrossRef]

Y. S. Han, J. Heo, and Y. B. Shin, "Cross relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

J. Phys. Conden. Matter (1)

A. Sennaroglu, A. Kurt, and G. �?zen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Conden. Matter 16, 2471-2478 (2004).
[CrossRef]

J. Phys. Soc. Japan (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

J. Phys.: Conden. Matter (1)

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

J. Solid State Chem. (1)

V. Dimitrov and T. Komatsu, "Classification of Simple Oxides: A Polarizability Approach," J. Solid State Chem. 163, 100-112 (2002).
[CrossRef]

Opt. Commun. (1)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 μm optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (3)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

M. D. O�??Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater. 30, 946-951 (2008).
[CrossRef]

Phys. Rev. (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

Phys. Rev. B (2)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

Sov. Phys. JETP (1)

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35,882-885 (1972).

Other (1)

R. A. H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Room temperature absorption cross-section of Tm3+ in TWP5 and TWP20 glasses.

Fig. 2.
Fig. 2.

Room temperature emission spectra of Tm3+ in TWP5 (a) and TWP20 (b) glasses for three Tm2O3 different concentrations.

Fig. 3.
Fig. 3.

Spectral overlap between the 3H43F4 (black) and 4I13/24I15/2 (red) normalized emissions of Tm3+ and Er3+ ions respectively in TWP20 glass together with the emission spectrum of a codoped sample (blue).

Fig. 4.
Fig. 4.

Logarithmic plot of the fluorescence decay of the 3H4 level obtained under excitation at 793 nm at room temperature for TWP5 and TWP20 glasses doped with 0.1, 0.5, and 1 wt%.

Fig. 5.
Fig. 5.

Temperature dependence of the 3H4 level lifetime for different Tm2O3 concentrations in TWP5 (a) and TWP20 (b) glasses.

Fig. 6.
Fig. 6.

Experimental emission decay curves of level 3H4 for TWP5 and TWP20 glasses doped with 1 wt% Tm2O3 at room temperature and the calculated fit with Eq. (5) (solid line).

Tables (3)

Tables Icon

Table 1. Density, Tm3+ ions concentration, refractive index, JO parameters, and r.m.s. deviation for the two glasses.

Tables Icon

Table 2. Predicted radiative transition rates, lifetimes, and branching ratios of some excited levels of Tm3+ in TWP glasses.

Tables Icon

Table 3. Obtained values for the energy transfer microparameter, migration transfer rate, and critical distance for the two glasses doped with 1 wt% at room temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A [ ( S , L ) J ; ( , ) ] = 64 π 4 e 2 3 3 ( 2 J + 1 ) [ n ( n 2 + 2 ) 2 9 S ed + n 3 S md ]
τ R = { S ' , L ' , J ' A [ ( S , L ) J ; ( S ' , L ' ) J ' ] } 1
β [ ( S , L ) J ; ( S ' , L ' ) J ' ] = A [ ( S , L ) J ; ( S ' , L ' ) J ' ] S ' , L ' , J ' A [ ( S , L ) J ; ( S ' , L ' ) J ' ]
σ se = λ p 4 8 π n 2 c β τ R Δλ eff
I ( t ) = I 0 exp t τ R γ t Wt

Metrics