Abstract

Eu3+, Li+-codoped ZnO:Zn phosphor with intense Eu3+ emissions upon indirect excitation of near-UV light has been synthesized under reducing condition. Steady-state and time-resolved photoluminescence and diffuse reflectance spectra are measured to investigate properties of the luminescence. The results suggest that there exists prominent energy transfer from ZnO host to Eu3+ ions. A series of energy levels as temporary storage of excitation energy play a crucial role on this energy transfer process. Two kinds of Eu3+ sites in Eu3+, Li+-codoped ZnO:Zn are distinguished based on the emission and excitation spectra in comparison with pure Eu2O3.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shionoya and W. M. Yen, eds., Phosphor Handbook (CRC Press, Boca Raton, 1999).
  2. R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
    [CrossRef]
  3. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
    [CrossRef]
  4. S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
    [CrossRef]
  5. J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
    [CrossRef]
  6. Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
    [CrossRef]
  7. W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
    [CrossRef]
  8. S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
    [CrossRef]
  9. D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
    [CrossRef]
  10. S. M. Yeh, C. S. Su, "Mixing LiF in Gd2O3:Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process," Mater. Sci. Eng. B. 38, 245-249 (1996).
    [CrossRef]
  11. H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
    [CrossRef]
  12. O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
    [CrossRef]
  13. F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
    [CrossRef]
  14. M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
    [CrossRef]
  15. R. Dingle, "Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide," Phys. Rev. Lett. 23, 579-581 (1969).
    [CrossRef]
  16. F. A. Kroger and H. J. Vink, "The origin of the fluorescence in self-activated ZnS, CdS, and ZnO," J. Chem. Phys. 22, 250-252 (1954).
    [CrossRef]
  17. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
    [CrossRef]
  18. C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
    [CrossRef]
  19. S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
    [CrossRef] [PubMed]
  20. M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
    [CrossRef]
  21. S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
    [CrossRef]

2005

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
[CrossRef]

2004

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

2003

W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
[CrossRef]

2002

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
[CrossRef]

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

1998

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

1997

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
[CrossRef]

1996

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

S. M. Yeh, C. S. Su, "Mixing LiF in Gd2O3:Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process," Mater. Sci. Eng. B. 38, 245-249 (1996).
[CrossRef]

1992

M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
[CrossRef]

1991

D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
[CrossRef]

1990

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

1969

R. Dingle, "Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide," Phys. Rev. Lett. 23, 579-581 (1969).
[CrossRef]

1954

F. A. Kroger and H. J. Vink, "The origin of the fluorescence in self-activated ZnS, CdS, and ZnO," J. Chem. Phys. 22, 250-252 (1954).
[CrossRef]

Azuma, K.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

Bachir, S.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

Baranov, P. G.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Bhargava, R. N.

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Briddon, P. R.

M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
[CrossRef]

Byeon, S. H.

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

Chhabra, V.

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Cho, W. S.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Davolos, M. R.

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

Dingle, R.

R. Dingle, "Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide," Phys. Rev. Lett. 23, 579-581 (1969).
[CrossRef]

Donega, C. de M.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Ekimov, A.

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Fernandez, F.

W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
[CrossRef]

Fu, X.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

Gnade, B. E.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Goss, J. P.

M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
[CrossRef]

Gu, F.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Han, J. I.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Hofmann, D. M.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Jafelicci, M.

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

Jia, W.

W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
[CrossRef]

Ju, S. H.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Kelly, G. P.

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Kim, D. K.

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

Kitai, A. H.

M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
[CrossRef]

Ko, M. G.

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

Kossanyi, J.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
[CrossRef]

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Kouyate, D.

D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
[CrossRef]

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Kroger, F. A.

F. A. Kroger and H. J. Vink, "The origin of the fluorescence in self-activated ZnS, CdS, and ZnO," J. Chem. Phys. 22, 250-252 (1954).
[CrossRef]

Kwak, M. G.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Lima, S. A. M.

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

Liu, M.

M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
[CrossRef]

Lopez, O. A.

O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
[CrossRef]

Lü, M. K.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Mammel, U.

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Mascher, P.

M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
[CrossRef]

McKittrick, J.

O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
[CrossRef]

Meijerink, A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

Merjerink, A.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Meulenkamp, E. A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

Monge, K.

W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
[CrossRef]

Niu, S.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

Oelkrug, D.

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Orlinskii, S. B.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Park, C. H.

C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
[CrossRef]

Park, J. C.

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

Park, Y. K.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Pouliquen, J.

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Ronfard, J.-C.

D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
[CrossRef]

Ronfard-Haret, J. C.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Schmidt, J.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

Seager, C. H.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Shea, L. E.

O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
[CrossRef]

Sigoli, F. A.

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

Som, T.

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Su, C. S.

S. M. Yeh, C. S. Su, "Mixing LiF in Gd2O3:Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process," Mater. Sci. Eng. B. 38, 245-249 (1996).
[CrossRef]

Sun, G.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

Tallant, D. R.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Taskar, N.

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Valat, P.

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

van Dijken, A.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

Vanheusden, K.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Vanmaekelbergh, D.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

Vink, H. J.

F. A. Kroger and H. J. Vink, "The origin of the fluorescence in self-activated ZnS, CdS, and ZnO," J. Chem. Phys. 22, 250-252 (1954).
[CrossRef]

Voigt, J. A.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Wang, S. F.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Wardle, M. G.

M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
[CrossRef]

Warren, W. L.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

Wei, S. H.

C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
[CrossRef]

Wilkinson, F.

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

Xin, Q.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

Xu, D.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Yang, H.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Yeh, S. M.

S. M. Yeh, C. S. Su, "Mixing LiF in Gd2O3:Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process," Mater. Sci. Eng. B. 38, 245-249 (1996).
[CrossRef]

Yuan, D. R.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Zhang, H.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

Zhang, S. B.

C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
[CrossRef]

Zhou, G. J.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Appl. Phys. Letts.

Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju, and W. S. Cho, "Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors," Appl. Phys. Letts. 72, 668-670 (1998).
[CrossRef]

Chem. Mater.

S. H. Byeon, M. G. Ko, J. C. Park, and D. K. Kim, "Low-temperature crystallization and highly enhanced photoluminescence of Gd2-xYxO3:Eu3+ by Li doping," Chem. Mater. 14, 603-608 (2002).
[CrossRef]

J. Alloy. Compd.

S. A. M. Lima, F. A. Sigoli, M. R. Davolos, and M. Jafelicci. Jr., "Europium(III)-containing zinc oxide from Pechini method," J. Alloy. Compd. 344, 280-284 (2002).
[CrossRef]

J. Appl. Phys.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys. 79, 7983-7990 (1996).
[CrossRef]

J. Chem. Phys.

F. A. Kroger and H. J. Vink, "The origin of the fluorescence in self-activated ZnS, CdS, and ZnO," J. Chem. Phys. 22, 250-252 (1954).
[CrossRef]

J. Lumin.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, "Luminescence properties of Li+ doped nanosized SnO2:Eu," J. Lumin. 115, 7-12 (2005).
[CrossRef]

O. A. Lopez, J. McKittrick, and L. E. Shea, "Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges," J. Lumin. 71, 1-11 (1997).
[CrossRef]

M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," J. Lumin. 54, 35-42 (1992).
[CrossRef]

D. Kouyate, J.-C. Ronfard, and J. Kossanyi, "Photo- and electro-luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support," J. Lumin. 50, 205-210 (1991).
[CrossRef]

S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J. C. Ronfard-Haret, "Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide," J. Lumin. 75, 35-49 (1997).
[CrossRef]

J. Kossanyi, D. Kouyate, J. Pouliquen, J. C. Ronfard-Haret, P. Valat, D. Oelkrug, U. Mammel, G. P. Kelly and F. Wilkinson, "Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities,"J. Lumin. 46, 17-24 (1990).
[CrossRef]

J. Phys. Chem. B.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation," J. Phys. Chem. B. 104, 1715-1723 (2002).
[CrossRef]

Langmuir.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method," Langmuir. 20, 3528-3531 (2004).
[CrossRef]

Mater. Sci. Eng. B.

S. M. Yeh, C. S. Su, "Mixing LiF in Gd2O3:Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process," Mater. Sci. Eng. B. 38, 245-249 (1996).
[CrossRef]

Opt. Mater.

W. Jia, K. Monge, and F. Fernandez, "Energy transfer from the host to Eu3+ in ZnO," Opt. Mater. 23, 27-32 (2003).
[CrossRef]

Phys. Rev. B.

C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Phys. Rev. B. 66, 073202-1-3 (2002).
[CrossRef]

M. G. Wardle, J. P. Goss, and P. R. Briddon, "Theory of Li in ZnO,A limitation for Li-based p-type doping," Phys. Rev. B. 71, 155205-1-10 (2005).
[CrossRef]

Phys. Rev. Lett.

S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, C. de M. Donega, and A. Merjerink, "Probing the wave function of shallow Li and Na donors in ZnO nanoparticles," Phys. Rev. Lett. 92, 047603-1-4 (2004).
[CrossRef] [PubMed]

R. Dingle, "Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide," Phys. Rev. Lett. 23, 579-581 (1969).
[CrossRef]

Phys. Status Solidi B

R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. Taskar, "Quantum confined atoms of doped ZnO nanocrystals," Phys. Status Solidi B 229, 897-901 (2002).
[CrossRef]

Other

S. Shionoya and W. M. Yen, eds., Phosphor Handbook (CRC Press, Boca Raton, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

X-ray diffraction patterns of (a): 5% Eu3+, 5% Li+-codoped ZnO:Zn, (b): 1% Eu3+, 1% Li+-codoped ZnO:Zn and (c): undoped ZnO:Zn

Fig. 2.
Fig. 2.

PL (right) and PLE (left) spectra of 1% Eu3+, 1% Li+ -codoped ZnO:Zn and pure Eu2O3 sintered in a reducing atmosphere at 1100°C. For Eu3+, Li+-codoped ZnO:Zn, a: λex=390 nm, b:λex=410 nm, c: λex=270 nm, d: λex=466 nm, α: λem=520 nm, β: λem=615 nm, χ: λem=609 nm; for Eu2O3, e: λex=466 nm, δ: λem=609 nm; ↓: excitation peaks occurring in Eu2O3 but fading in the case of codoped sample; the broken positions in the PLE spectra are half wavelengths of monitored emissions.

Fig. 3.
Fig. 3.

Left: Diffuse reflectance spectra of ZnO, un-doped ZnO:Zn, ZnO:Eu3+, Li+ sintered in air and Eu3+, Li+-codoped ZnO:Zn samples; Right: Diffuse reflectance spectra of Li+-free ZnO:Zn, 1% Eu3+, 1% Li+-codoped ZnO:Zn, 1% Eu3+ samples.

Fig. 4.
Fig. 4.

Decay curves of undoped ZnO:Zn and Eu3+, Li+-codoped ZnO:Zn samples sintered in reducing atmosphere monitored at 500 nm and 615 nm, respectively.

Tables (1)

Tables Icon

Table 1. Lifetimes of undoped ZnO:Zn (τu) and Eu3+,Li+-codoped ZnO:Zn (τc) samples fitted by biexponential decay function: A 1 exp(t1)+A 2 exp(t2).

Metrics