Abstract

A study of the optical transmission of low-loss W1.5 photonic crystal waveguides built on silicon membranes and operating at telecom wavelengths is presented. The feasibility of performing all-optical switching is demonstrated for W1.5 waveguides coupled with L3 cavities, systems amenable for incorporation in on-chip devices. Switching of waveguide transmission is achieved by means of optical excitation of free carriers using a 2.5 ns pump laser. Experimental results are reproduced by finite-difference time-domain simulations which model the response of the finite system and band structure calculations describing the infinite, ideal one.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  2. K. Sakoda, Optical Properties Of Photonic Crystals (Springer, 2005).
  3. Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
    [CrossRef]
  4. I. M¨arki, M. Salt, H. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 513 (2006).
    [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator." Nature (London) 435, 325 (2005).
    [CrossRef]
  6. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140 (2007).
    [CrossRef] [PubMed]
  7. K. ichi Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102 (2006).
    [CrossRef]
  8. S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
    [CrossRef]
  9. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
    [CrossRef]
  10. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
    [CrossRef]
  11. V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
    [CrossRef]
  12. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
    [CrossRef] [PubMed]
  13. F. Ndi, J. Toulouse, T. Hodson, and D. Prather, "All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254 (2005).
    [CrossRef] [PubMed]
  14. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  15. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]
  16. X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
    [CrossRef]
  17. M. F¨orst, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046 (2007).
    [CrossRef] [PubMed]
  18. D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
    [CrossRef] [PubMed]
  19. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
    [CrossRef]
  20. Q2. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007).
    [CrossRef] [PubMed]
  21. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006).
    [CrossRef]
  22. A. Taflove and S. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).
  23. J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000).
    [CrossRef]
  24. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
    [CrossRef]
  25. K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000).
    [CrossRef]
  26. T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
    [CrossRef]
  27. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 2004).
  28. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003).
    [CrossRef] [PubMed]

2007 (5)

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140 (2007).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

M. F¨orst, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046 (2007).
[CrossRef] [PubMed]

Q2. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007).
[CrossRef] [PubMed]

2006 (3)

L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006).
[CrossRef]

K. ichi Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102 (2006).
[CrossRef]

I. M¨arki, M. Salt, H. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 513 (2006).
[CrossRef] [PubMed]

2005 (8)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator." Nature (London) 435, 325 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

F. Ndi, J. Toulouse, T. Hodson, and D. Prather, "All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
[CrossRef] [PubMed]

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

2004 (3)

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

2000 (2)

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000).
[CrossRef]

J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

Almeida, V.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
[CrossRef]

Andreani, L.

D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
[CrossRef] [PubMed]

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Andreani, L. C.

L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

Bajoni, D.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Barrios, C.

V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
[CrossRef]

Belotti, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Bolten, J.

Charvolin, T.

Chen, Y.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

El Melhaoui, L.

Euser, T. G.

T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

F¨orst, M.

Fedeli, J.

Foster, M.

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

G¨osele, U.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

Gaeta, A.

Galli, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Gedney, S.

J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006).
[CrossRef]

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
[CrossRef] [PubMed]

Guizzetti, G.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Hadji, E.

Hamann, H.

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

Herzig, H.

Hodson, T.

Husko, C.

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Kira, G.

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

Kurz, H.

Kwong, D.-L.

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

Lalanne, P.

Leonard, S.

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Lipson, M.

Lyan, P.

M¨arki, I.

Manipatruni, S.

McNab, S.

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003).
[CrossRef] [PubMed]

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Moll, N.

Moormann, C.

Ndi, F.

Niehusmann, J.

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

O???Boyle, M.

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

Ouzounov, D.

Panepucci, R.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
[CrossRef]

Patrini, M.

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

Peyrade, D.

Picard, E.

Pl¨otzing, T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator." Nature (London) 435, 325 (2005).
[CrossRef]

Prather, D.

Roden, J.

J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000).
[CrossRef]

Rodier, J.

Salt, M.

Schilling, J.

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Schmidt, B.

Schweizer, S. L.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

Shakya, J.

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000).
[CrossRef]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

Stanley, R.

Tan, H. W.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Toulouse, J.

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

van Driel, H.

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

van Driel, H. M.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

Velha, P.

Vlasov, Y.

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003).
[CrossRef] [PubMed]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000).
[CrossRef]

Vos, W. L.

T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Wahlbrink, T.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Wehrspohn, R.

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Wehrspohn, R. B.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

Wong, C.W.

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

Xu, Q.

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Yang, X.

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

Yu, M.

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

K. ichi Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005).
[CrossRef]

Microw. Opt. Tech. Letters (1)

J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000).
[CrossRef]

Nature (London) (4)

Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[CrossRef]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator." Nature (London) 435, 325 (2005).
[CrossRef]

Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (5)

S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002).
[CrossRef]

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004).
[CrossRef]

L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006).
[CrossRef]

M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005).
[CrossRef]

K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000).
[CrossRef]

Other (4)

E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 2004).

A. Taflove and S. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

K. Sakoda, Optical Properties Of Photonic Crystals (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron microscopy images of the samples showing (a) a top view of the cavity region and (b) a detail of the access ridge waveguide.

Fig. 2.
Fig. 2.

(Color online) Schematic view of the set-up. The probe beam coming from a CW laser is focussed on the sample (S) and collected by high numerical aperture objectives (L1, L2) and optical fibres (OF1, OF2). The transmitted probe beam is collected by an InGaAs detector (D1) connected to an oscilloscope (OSC). An additional line delivers a pulsed pump beam (PP) into the sample surface in order to locally modify its refractive index. Part of the pump beam is collected with a photodiode (D2) and used as trigger.

Fig. 3.
Fig. 3.

(Color online) (a) Band structure of a 2D PhC containing a W1.5 line defect. Globally odd (even) defect modes appear as open-red (filled-blue) circles. Filled yellow region indicates bulk PhC modes. Grey band corresponds to a miniband of forbidden frequencies. (b) Experimental and calculated (FDTD) transmission spectra appear as black and red lines respectively.

Fig. 4.
Fig. 4.

(Color online) Transmission spectra for two different samples containing L3 cavities within W1.5 waveguides, created by introducing two sets of Bragg mirrors containing 6 (a) and 5 (b) holes. Insets show high resolution spectra of the selected region. Red line in (a) is a Lorentzian fit.

Fig. 5.
Fig. 5.

(Color online) Transmission spectra for a sample containing an L3 cavity within a W1.5 waveguide, created by introducing two sets of Bragg mirrors containing 6 holes. The black curve shows the FDTD linear spectrum calculated using the bulk silicon refractive index n 0 and the red one the switched FDTD simulation obtained by locally changing the refractive index of the cavity to n = 3471 (see text). Inset shows a zoomed image of the lowest energy transmission peak.

Fig. 6.
Fig. 6.

(Color online) Spatial distribution of the electromagnetic field for the frequency corresponding to the transmission peak (see text).

Fig. 7.
Fig. 7.

(a) Time evolution of the 532 nm pump pulse employed to inject free carriers into the sample. (b) Change in transmission through the sample at a wavelength λc in the same time scale as for the pump pulse.

Fig. 8.
Fig. 8.

Change in transmission of the probe beam in the time lapse when the system is optically pumped. (a)-(f) Show the evolution for different probe wavelengths (λp ) in the surroundings of the cavity mode center (λc ). The inset shows the position of the probe wavelength indicated with the blue arrows to respect the resonance.

Fig. 9.
Fig. 9.

(Color online) Transmission spectrum of the cavity mode in the linear regime (black line) and under optical pumping (red line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε B + Δ ε eh ( ω ) = ε B ( ω ) ( ω p ω ) 1 1 + i ω τ D
ω p = N eh e 2 ε 0 m e m opt
n = n 0 e 2 2 n 0 ε 0 m opt m e ω 2 N eh

Metrics