Abstract

A new technique of design and reconstruction of a color hologram is presented. The design is based on an iterative multi-plane optimization algorithm. It allows to encode three different images for a reconstruction at various distances measured from the hologram plane. The distances are calculated in order to obtain a fine color compound image when the hologram is illuminated by three laser beams of RGB colors. A single light phase modulator is used instead of three. The reconstructed red, green and blue component images remain in an exact match in size and position. The 2-D color image is reconstructed at a pre-assumed distance and its color pattern can be easily controlled by the choice of the three input component images.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media," Appl. Opt. 5, 1303-1311 (1966).
    [CrossRef] [PubMed]
  2. T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
    [CrossRef]
  3. M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
    [CrossRef]
  4. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
    [CrossRef]
  5. G. C. Larsen and T. S. Gleghorn, "Hologram methods for signature security consolidated content and an accelerometer," US Patent Application Publication, Pub. No.: US 2007/0127096 A1 (2007).
  6. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]
  7. T. Ito and K. Okano, "Color electroholography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Express 12, 4320-4325 (2004).
    [CrossRef] [PubMed]
  8. R. W. Gerchberg and W. O. Saxton "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35 (1972).
  9. R. Dorsch, A. Lohmann, and S. Sinzinger "Fresnel ping-pong algorithm for two-plane computer-generated hologram display," Appl. Opt. 33869-875 (1994).
    [CrossRef] [PubMed]
  10. M. Sypek, "Light propagation in the Fresnel region: new numerical approach," Opt. Commun. 116, 43-48 (1995).
    [CrossRef]

2007

T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

2005

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

2004

2002

1995

M. Sypek, "Light propagation in the Fresnel region: new numerical approach," Opt. Commun. 116, 43-48 (1995).
[CrossRef]

1994

1966

Dorsch, R.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35 (1972).

Ito, T.

Kato, J.

Kolodziejczyk, A.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

Kozma, A.

Leith, E. N.

Lohmann, A.

Makowski, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

Marks, J.

Massey, N.

Matsumura, T.

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

Okabe, G.

T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
[CrossRef]

Okano, K.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35 (1972).

Sinzinger, S.

Suszek, J.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

Sypek, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

M. Sypek, "Light propagation in the Fresnel region: new numerical approach," Opt. Commun. 116, 43-48 (1995).
[CrossRef]

Upatnieks, J.

Yamaguchi, I.

Yamaguchi, T.

T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
[CrossRef]

Yoshikawa, H.

T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
[CrossRef]

Appl. Opt.

Opt. Commun.

M. Sypek, "Light propagation in the Fresnel region: new numerical approach," Opt. Commun. 116, 43-48 (1995).
[CrossRef]

Opt. Eng.

T. Yamaguchi, G. Okabe, and H. Yoshikawa "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007).
[CrossRef]

M. Makowski, G. Mikula, M. Sypek, and A. Kolodziejczyk "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm," Opt. Eng. 44, 125805 (2005).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek "Iterative design of multi-plane holograms: experiments and applications," Opt. Eng. 46 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. C. Larsen and T. S. Gleghorn, "Hologram methods for signature security consolidated content and an accelerometer," US Patent Application Publication, Pub. No.: US 2007/0127096 A1 (2007).

R. W. Gerchberg and W. O. Saxton "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ideal scheme of the design of a three-plane phase hologram. P denotes a propagation operation.

Fig. 2.
Fig. 2.

Ideal scheme of a reconstruction of a three-plane hologram using beams of three different wavelengths. The distance of 100 mm, where all three RGB beams reconstruct a sharp image is marked.

Fig. 3.
Fig. 3.

Exemplary input images split into RGB components. Set 1: “color hologram”, Set 2: “child”, Set 3: “roses”.

Fig. 4.
Fig. 4.

Results of a numerical reconstruction of the hologram at the distance of 100 mm using wavelengths of a red, green and blue light.

Fig. 5.
Fig. 5.

Color combination of: a) the input grayscale component images; b) the output grayscale images numerically reconstructed from the hologram.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U n = P HR { A 1 { P BH { A B { P GB { A G { P RG { A R { U n 1 } } } } } } } }

Metrics