Abstract

In this paper, we investigated one of the promising applications of left-handed metamaterials: composite metamaterial based cavities. Four different cavity structures operating in the microwave regime were constructed, and we observed cavity modes on the transmission spectrum with different quality factors. The effective permittivity and permeability of the CMM structure and cavity structure were calculated by use of a retrieval procedure. Subsequently, in taking full advantage of the effective medium theory, we modeled CMM based cavities as one dimensional Fabry-Perot resonators with a subwavelength cavity at the center. We calculated the transmission from the Fabry-Perot resonator model using the one-dimensional transfer matrix method, which is in good agreement with the measured result. Finally, we investigated the Fabry-Perot resonance phase condition for a CMM based cavity, in which the condition was satisfied at the cavity frequency. Therefore, our results show that it is possible to treat metamaterial based cavities as one-dimensional Fabry-Perot resonators with a subwavelength cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
    [CrossRef]
  4. D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  8. E. Ozbay, and K. Aydin "Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial," Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
    [CrossRef]
  9. E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
    [CrossRef]
  10. K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
    [CrossRef]
  11. I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
    [CrossRef] [PubMed]
  12. A. Grbic and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett. 82, 1815-1817 (2003).
    [CrossRef]
  13. A. M. Belyantsev and A. B. Kozyrev, "Reversed Doppler effect under reflection from a shock electromagnetic wave," Tech. Phys. 47, 1477-1480 (2002).
    [CrossRef]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  15. Q4. K. Aydin, and E. Ozbay "Experimental investigation of reflection characteristics of left-handed metamaterials in free space," IET Microwaves Antennas Propag. 1, 89-93 (2007).
    [CrossRef]
  16. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  17. T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef] [PubMed]
  18. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
    [CrossRef]
  19. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
    [CrossRef]
  20. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
    [CrossRef]
  21. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
    [CrossRef]
  22. X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
    [CrossRef]
  23. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
    [CrossRef]
  24. D. R. Fredkin and A. Ron "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
    [CrossRef]
  25. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (John Wiley & Sons, Inc., 2006), Chap.2.
  26. M. Selim Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
    [CrossRef]
  27. E. �?zbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett. 69, 743-745 (1996).
    [CrossRef]

2008 (1)

E. Ozbay, and K. Aydin "Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial," Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

2007 (2)

E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
[CrossRef]

Q4. K. Aydin, and E. Ozbay "Experimental investigation of reflection characteristics of left-handed metamaterials in free space," IET Microwaves Antennas Propag. 1, 89-93 (2007).
[CrossRef]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

2004 (2)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

2003 (4)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett. 82, 1815-1817 (2003).
[CrossRef]

2002 (3)

A. M. Belyantsev and A. B. Kozyrev, "Reversed Doppler effect under reflection from a shock electromagnetic wave," Tech. Phys. 47, 1477-1480 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

D. R. Fredkin and A. Ron "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

2001 (2)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (2)

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

E. �?zbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

1995 (1)

M. Selim Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

??zbay, E.

E. �?zbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

Aydin, K.

E. Ozbay, and K. Aydin "Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial," Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

Q4. K. Aydin, and E. Ozbay "Experimental investigation of reflection characteristics of left-handed metamaterials in free space," IET Microwaves Antennas Propag. 1, 89-93 (2007).
[CrossRef]

K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
[CrossRef]

Belyantsev, A. M.

A. M. Belyantsev and A. B. Kozyrev, "Reversed Doppler effect under reflection from a shock electromagnetic wave," Tech. Phys. 47, 1477-1480 (2002).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Bulu, I.

E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
[CrossRef]

Caglayan, H.

E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
[CrossRef] [PubMed]

Chen, X.

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Economou, E. N.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Economou, E.N.

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett. 82, 1815-1817 (2003).
[CrossRef]

Fredkin, D. R.

D. R. Fredkin and A. Ron "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Grbic, A.

A. Grbic and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett. 82, 1815-1817 (2003).
[CrossRef]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Kong, J. A.

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Koschny, T.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

Kozyrev, A. B.

A. M. Belyantsev and A. B. Kozyrev, "Reversed Doppler effect under reflection from a shock electromagnetic wave," Tech. Phys. 47, 1477-1480 (2002).
[CrossRef]

Kroll, N.

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Markos, P.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

Ozbay, E.

E. Ozbay, and K. Aydin "Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial," Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

Q4. K. Aydin, and E. Ozbay "Experimental investigation of reflection characteristics of left-handed metamaterials in free space," IET Microwaves Antennas Propag. 1, 89-93 (2007).
[CrossRef]

E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
[CrossRef]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Robins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

Ron, A.

D. R. Fredkin and A. Ron "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Selim Unlu, M.

M. Selim Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Soukoulis, C. M.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Strite, S.

M. Selim Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Temelkuran, B.

E. �?zbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

Willie, D. R.

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Wu, B. I.

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

A. Grbic and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett. 82, 1815-1817 (2003).
[CrossRef]

D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246-2248 (2000).
[CrossRef]

D. R. Fredkin and A. Ron "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002).
[CrossRef]

E. �?zbay, and B. Temelkuran, "Reflection Properties and Defect Formation in Photonic Crystals," Appl. Phys. Lett. 69, 743-745 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999).
[CrossRef]

IET Microwaves Antennas Propag. (1)

Q4. K. Aydin, and E. Ozbay "Experimental investigation of reflection characteristics of left-handed metamaterials in free space," IET Microwaves Antennas Propag. 1, 89-93 (2007).
[CrossRef]

J. Appl. Phys. (1)

M. Selim Unlu and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

New J. Phys. (1)

K. Aydin, I. Bulu, and E. Ozbay, "Electromagnetic wave focusing from sources inside a two-dimensional left-handed material superlens," New J. Phys. 8, 221 (2006).
[CrossRef]

Opt. Lett. (1)

I. Bulu, H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett. 31, 814-816 (2006).
[CrossRef] [PubMed]

Photonics Nanostruct. Fundam. Appl. (1)

E. Ozbay, and K. Aydin "Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial," Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

Phys. Rev. B (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001).
[CrossRef]

T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005).
[CrossRef]

Phys. Rev. E (3)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
[CrossRef]

X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

T. Koschny, M. Kafesaki, E.N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell�??s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell�??s law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Physica Status Solidi B (1)

E. Ozbay, I. Bulu, and H. Caglayan, "Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials," Physica Status Solidi B 244, 1202-12010 (2007).
[CrossRef]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Tech. Phys. (1)

A. M. Belyantsev and A. B. Kozyrev, "Reversed Doppler effect under reflection from a shock electromagnetic wave," Tech. Phys. 47, 1477-1480 (2002).
[CrossRef]

Other (1)

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (John Wiley & Sons, Inc., 2006), Chap.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). The unit cell of the CMM structure: a=4.95 mm, b= 0.25 mm, and c=1.6 mm. The wire stripes were printed on the back of Teflon (ε=2.17) substrates, and the square SRR were printed on the front faces. The thickness of the metal (copper) was 0.05 mm. (b). The measurement (blue line), which is in agreement with the calculation (red line), demonstrates that this CMM structure has a left-handed transmission peak from 5.5-7.0 GHz. The simulation was performed by the commercial software program CST Microwave Studio®.

Fig. 2.
Fig. 2.

Four different defect structures used in this study: (a) D1: closed ring on the front side of the board and cut wire on the back side, (b) D2: closed ring only on the front side, (c) D3: cut wire only on the back side and, (d) D4: cut wire on both sides of the Teflon board. These defect structures were introduced in the center of the CMM structure. Therefore, there are four layers of a CMM structure in the forward and backward of the defect structures in the propagation direction.

Fig. 3.
Fig. 3.

We observed cavity modes in the transmission spectrum of the CMM-based cavities (D1, D2, D3, and D4). The experiments (red line) are in good agreement with the CST Microwave calculations (black line). It is possible to design different CMM based cavity structures operating at different frequencies with different Q-factors.

Fig. 4.
Fig. 4.

(a). The calculated effective ε and μ of the CMM structure by use of a retrieval procedure show that the CMM structure possess effective ε<0, μ<0 from 5.5-7.0 GHz and ε<0, μ>0 from 7.0-9.5 GHz. (b) However, a D3 structure has ε>0, μ>0 in these frequency ranges.

Fig. 5.
Fig. 5.

(a). The CMM based cavities can be treated as 1D FPRs with a subwavelength cavity region at the center. (b). The calculated transmission from the model of the CMM based cavity (D3) structure using the 1D transfer matrix method (black line) and CST Microwave Studio (red line) are in good agreement.

Fig. 6.
Fig. 6.

The calculated total phase (ϕT ) around the cavity resonance shows that the resonance condition is satisfied at the resonance frequency for a CMM based cavity (D3) structure, just like in FPRs.

Tables (1)

Tables Icon

Table 1. Quality factors of the CMM based cavity structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E c = t 1 r 2 e 2 i ( βL + ϕ ) E i

Metrics