Abstract

If a heated pipe is rotated about its axis, a density gradient is formed which results in the pipe acting as a graded index lens. In this study we revisit the concept of a spinning pipe gas lens and for the first time analyse both the wave propagation of optical fields through the lens, and determine the optical aberrations introduced by the lens to the laser beam. We show that such lenses are highly aberrated, thus having a deleterious effect on the laser beam quality.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. G. Martynenko, "Aerothemooptics," Int. J. Heat. Mass. Transfer 18, 793-796 (1975).
    [CrossRef]
  2. M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
    [CrossRef]
  3. M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
    [CrossRef]
  4. M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
    [CrossRef]

1996 (1)

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

1991 (1)

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

1986 (1)

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
[CrossRef]

1975 (1)

O. G. Martynenko, "Aerothemooptics," Int. J. Heat. Mass. Transfer 18, 793-796 (1975).
[CrossRef]

Cunningham, P. F.

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
[CrossRef]

Dempers, C. A.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

Forbes, A.

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

Kosch, M.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

Kuppen, M.

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

Lisi, N.

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

Martynenko, O. G.

O. G. Martynenko, "Aerothemooptics," Int. J. Heat. Mass. Transfer 18, 793-796 (1975).
[CrossRef]

Michaelis, M. M.

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
[CrossRef]

Notcutt, M.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
[CrossRef]

Prause, A.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

Viranna, N.

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

Int. J. Heat. Mass. Transfer (1)

O. G. Martynenko, "Aerothemooptics," Int. J. Heat. Mass. Transfer 18, 793-796 (1975).
[CrossRef]

Laser and Particle Beams (1)

M. M. Michaelis, M. Kuppen, A. Forbes, N. Viranna, and N. Lisi, "Progress with gas lenses," Laser and Particle Beams 14, 473-485 (1996).
[CrossRef]

Nature (1)

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, "A gas lens telescope," Nature 353, 547-548 (1991).
[CrossRef]

Opt. Commun. (1)

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, "Drilling by a Gas Lens Focused Laser," Opt. Commun. 59, 369-374 (1986).
[CrossRef]

Supplementary Material (4)

» Media 1: AVI (5249 KB)     
» Media 2: AVI (3941 KB)     
» Media 3: AVI (1194 KB)     
» Media 4: AVI (1178 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A cross–section of a SPGL showing the velocity distribution of the gases as the warmer gas near the wall escapes, and is replaced by the cool air which enters along the axis. (Fig 1 Movie [5.3 MB]) [Media 1]

Fig. 2.
Fig. 2.

Cross–sectional density profiles of an SPGL showing: (a) the initial state after heating, and (b) the rotating steady-state near the end face of the pipe, with high density centre (red) and low density edges (blue). (Fig 2 Movie [4 MB]) [Media 2]

Fig. 3.
Fig. 3.

Experimental set–up. (FM=flat mirror).

Fig. 4.
Fig. 4.

(a) The focal length of the SPGL as calculated from the optical wavefront and confirmed by inspection, and (b) the intensity distribution during rotation (T=422 K). (Fig 4b Movie [0.15 MB]) [Media 3]

Fig. 5.
Fig. 5.

(a) y–tilt and (b) x–tilt.

Fig. 6.
Fig. 6.

The phase distribution of the laser beam with: (a) no rotation but heated to 422 K, showing tilt; (b) after rotating the SPGL at 17 Hz, showing significant curvature on the wavefront; and (c) same conditions as in (b) but with defocus and tilt removed, revealing the higher order aberrations.

Fig. 7.
Fig. 7.

(a) Higher order aberrations introduced by the SPGL; (b) increase in M 2 x with rotation speed and temperature as a direct result of the aberrations in (a).

Fig. 8.
Fig. 8.

A CFD model of the SPGL showing the onset of an as yet unknown instability in the density profile. (Fig 8 Movie [1.2 MB])[Media 4]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 0 1 2 γ 2 r 2 ,

Metrics