Abstract

A semi-weakly confined waveguide structure was designed and fabricated. This waveguide structure has a 350 nm thin core layer. Its optical mode field is weakly confined in vertical direction but is strongly confined laterally. The waveguide can support a nearly circular optical field distribution that matches well with a single-mode fiber. An erbium-doped waveguide amplifier (EDWA) with the new waveguide structure was fabricated by sol-gel method. The EDWA has a passive core and double-layered buffer/cladding. A small coupling loss of 0.4 dB/facet and an internal gain of 1.9 dB via evanescent wave amplification near 1550 nm were obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, "Integrated optics and new wave phenomena in optical waveguides," Rev. Mod. Phys. 49, 361-420 (1977).
    [CrossRef]
  2. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  3. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
    [CrossRef] [PubMed]
  4. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properites of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  6. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
    [CrossRef]
  7. Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
    [CrossRef]
  8. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007).
    [CrossRef] [PubMed]
  9. R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
    [CrossRef]
  10. W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
    [CrossRef]
  11. X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
    [CrossRef]
  12. G. D. Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "C-band wavegudie amplifier produced by femtosecond laser writing," Opt. Express 13, 5976 (2005).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

2004 (2)

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properites of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

2003 (3)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

2002 (2)

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

2001 (1)

1998 (1)

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

1977 (1)

P. K. Tien, "Integrated optics and new wave phenomena in optical waveguides," Rev. Mod. Phys. 49, 361-420 (1977).
[CrossRef]

Ahmad, M. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

Almeida, V. R.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Cerullo, G.

Chiodo, N.

Clapp, T. V.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

Dimmick, T. E.

Erickson, D.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Green, M.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Holmes, A. S.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

Huang, W.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

Itoh, K.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Kakarantzas, G.

Killi, A.

Kopf, D.

Laporta, P.

Lavers, C. R.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Le Roux, R.

Lederer, M.

Li, D. X.

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

Lipson, M.

Liu, L. Y.

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

Lou, J.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properites of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Matsuda, N.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properites of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Morgner, U.

Murabayashi, M.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Ojha, S. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

Osellame, R.

Panepucci, R. R.

Qi, Z.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Russell, P. St. J.

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Schmidt, B. S.

Schneider, V. M.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Sirbuly, D. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Syms, R. R. A.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

Taccheo, S.

Tien, P. K.

P. K. Tien, "Integrated optics and new wave phenomena in optical waveguides," Rev. Mod. Phys. 49, 361-420 (1977).
[CrossRef]

Tong, L.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properites of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Valle, G. D.

Wang, W. C.

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

Wang, X. J.

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

Xu, L.

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

Yang, A. H. J.

Yang, P.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Yeatman, E. M.

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Huang, R. R. A. Syms, E. M. Yeatman, M. M. Ahmad, T. V. Clapp, and S. M. Ojha, "Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier," IEEE Photon. Technol. Lett. 14, 959-961 (2002).
[CrossRef]

J. Appl. Phys. (1)

X. J. Wang, L. Xu, D. X. Li, L. Y. Liu, and W. C. Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94, 4228-4230 (2003).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, "Development of the SC-RTA process for fabrication of sol-gel based silica-on-silicon integrated optic components," J. Sol-Gel Sci. Technol. 13, 509-516 (1998).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

P. K. Tien, "Integrated optics and new wave phenomena in optical waveguides," Rev. Mod. Phys. 49, 361-420 (1977).
[CrossRef]

Science (1)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, "Nanoribbon waveguides for subwavelength photonics integration," Science 305, 1269-1273 (2004).
[CrossRef] [PubMed]

Sens. Actuators. B (1)

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi, and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators. B 81, 254-258 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic structure of the optimized semi-weakly confined EDWA. The dashed and solid lines are the effective optical mode profile at 1550 nm and 980 nm respectively. Thickness of waveguide core and double buffer/cladding layers are labeled as well with the buffer/cladding that surrounds the core contains Er/Yb ions.

Fig. 2.
Fig. 2.

Processes to fabricate the EDWA sample. All layers were deposited by sol-gel method and DC-RTA technique.

Fig. 3.
Fig. 3.

Plots of insertion loss versus waveguide length at 1555 nm and 974 nm respectively.

Fig. 4.
Fig. 4.

Gain spectra of a 3.5-cm-long semi-weakly confined EDWA with the double-layered buffer/cladding structure. The lines from bottom to top are gain spectra under total pump power from 0 mW to 200 mW respectively.

Fig. 5.
Fig. 5.

Plot of signal gain versus waveguide length at the peak near 1535 nm.

Fig. 6.
Fig. 6.

Plot of signal gain versus total launched pump power at the peak near 1535 nm. The waveguide length is 3.5 cm.

Fig. 7.
Fig. 7.

Gain spectrum of a 3.7-cm-long semi-weakly confined EDWA with uniform distribution of Er/Yb ions in whole buffer/cladding and pumped at a total power of 200 mW.

Metrics