Abstract

A novel approach for the reflection equalization of a phase-only sampled fiber Bragg grating (FBG) is presented, where the grating is specially designed as a simultaneous dispersion and dispersion-slope compensator with channels up to 51. The sampling-function used is given with an analytical form with a linearly-chirped sampling period and is optimized by using the simulated annealing algorithm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
    [CrossRef]
  2. A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
    [CrossRef]
  3. F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
    [CrossRef]
  4. M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
    [CrossRef]
  5. Y.  Painchaud, A.  Mailloux, H.  Chotard, E.  Pelletier, and M.  Guy, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," Optical Fiber Communication Conf. Paper. ThAA5. (2002).
  6. W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
    [CrossRef]
  7. A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
    [CrossRef]
  8. Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
    [CrossRef]
  9. Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
    [CrossRef]
  10. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 13, 2074-2083 (2003).
  11. H. Li, M. Li, K. Ogusu, Y. Sheng, and J. Rothenberg, "Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings," Opt. Express 14, 3152-3160 (2006).
    [CrossRef] [PubMed]
  12. J. E. Rothenberg, H. Li, Y. Sheng, J. Popelek, and J. Zweiback, "Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. 31, 1199-1201 (2006).
    [CrossRef] [PubMed]
  13. H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
    [CrossRef]
  14. H. Lee and G. Agrawal, "Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation," Opt. Express 12, 5595-5602 (2004).
    [CrossRef] [PubMed]
  15. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, "Advances in the Design and Fabrication of High-Channel-Count Fiber Bragg Gratings," J. Lightwave Technol. 25, 2739-2750 (2007).
    [CrossRef]
  16. Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
    [CrossRef]
  17. M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," Proceedings of OFC 04, WK1 (2004).
  18. Y. Painchaud, M Poulin, M. Morin, and M. Guy, "Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber," Optical Fiber Communication Conf. Paper. OThE2 (2006).
  19. Y. Painchaud and M. Morin, "Iterative method for the design of arbitrary multi-channel fiber Bragg gratings," OSA Topical meeting BGPP2007, Paper. BTuB1 (2007).
  20. M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
    [CrossRef]

2007 (1)

2006 (2)

2005 (2)

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

2004 (2)

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Lee and G. Agrawal, "Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation," Opt. Express 12, 5595-5602 (2004).
[CrossRef] [PubMed]

2003 (4)

H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 13, 2074-2083 (2003).

A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

2000 (1)

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

1999 (1)

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
[CrossRef]

1998 (1)

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

1995 (2)

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Agrawal, G.

H. Lee and G. Agrawal, "Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation," Opt. Express 12, 5595-5602 (2004).
[CrossRef] [PubMed]

H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

Buryak, A. V.

A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Chan, H.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Chen, X. F.

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

Chu, P.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Cole, M.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Dai, Y. T.

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

Dhosi, G.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Durkin, M.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Eggleton, B.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Fan, C.

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

Grudinin, A. B.

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Isomäki, A.

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

Kolossovski, K.

A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Krug, P.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Laming, R.

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Lee, H.

H. Lee and G. Agrawal, "Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation," Opt. Express 12, 5595-5602 (2004).
[CrossRef] [PubMed]

H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

Li, H.

Li, M.

Li, Y.

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 13, 2074-2083 (2003).

Loh, W. H.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
[CrossRef]

Lyytikäinen, J.

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

Ogusu, K.

Okhotnikov, O. G.

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

Ouellette, F.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Pan, J. J.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
[CrossRef]

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Popelek, J.

Rothenberg, J.

Rothenberg, J. E.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, "Advances in the Design and Fabrication of High-Channel-Count Fiber Bragg Gratings," J. Lightwave Technol. 25, 2739-2750 (2007).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Sheng, J. Popelek, and J. Zweiback, "Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. 31, 1199-1201 (2006).
[CrossRef] [PubMed]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 13, 2074-2083 (2003).

Sheng, Y.

Stepanov, D. Yu.

A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

Stephens, T.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

Vainionpää, A.

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

Wang, K.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Wang, X.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Wang, Y.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

Wu, Q.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Xie, S. Z.

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

Xu, X.

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

Yu, C.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Yu, Z.

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Zervas, M. N.

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

Zhou, F. Q.

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
[CrossRef]

Zweiback, J.

J. E. Rothenberg, H. Li, Y. Sheng, J. Popelek, and J. Zweiback, "Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask," Opt. Lett. 31, 1199-1201 (2006).
[CrossRef] [PubMed]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

A. Isomäki, A. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, "Semiconductor mirror for dynamic dispersion compensation," Appl. Phys. Lett. 82, 2773-2774 (2003).
[CrossRef]

Electron. Lett. (1)

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, "Broadband and WDM dispersion compensation using sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. V. Buryak, K. Kolossovski, and D. Yu. Stepanov, "Optimisation of refractive index sampling for multi-channel FBGs," IEEE J. Quantum Electron. 39, 91-98 (2003).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based-dispersion slope compensator," IEEE Photon. Tech. Lett. 11, 1280-1282 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

H. Lee and G. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope dispersion," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003).
[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, "Split of phase-shifts in phase mask for fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1316-1318 (2004).
[CrossRef]

Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. Chan, and P. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005).
[CrossRef]

Y. T.  Dai, X. F.  Chen, X.  Xu, C.  Fan, and S. Z.  Xie, "High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift," IEEE Photon. Technol. Lett.  17, 1040-1042 (2005).
[CrossRef]

M. Ibsen, M. Durkin, M. Cole, and R. Laming, "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, and R. I. Laming, "Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation," IEEE Photon. Technol. Lett. 12, 498-500 (2000).
[CrossRef]

J. Lightwave Technol. (2)

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, "Phased-only sampled fiber Bragg gratings for high channel counts chromatic dispersion compensation," J. Lightwave Technol. 13, 2074-2083 (2003).

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, "Advances in the Design and Fabrication of High-Channel-Count Fiber Bragg Gratings," J. Lightwave Technol. 25, 2739-2750 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (4)

Y.  Painchaud, A.  Mailloux, H.  Chotard, E.  Pelletier, and M.  Guy, "Multi-channel fiber Bragg gratings for dispersion and slope compensation," Optical Fiber Communication Conf. Paper. ThAA5. (2002).

M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," Proceedings of OFC 04, WK1 (2004).

Y. Painchaud, M Poulin, M. Morin, and M. Guy, "Fiber Bragg grating based dispersion compensator slope-matched for LEAF fiber," Optical Fiber Communication Conf. Paper. OThE2 (2006).

Y. Painchaud and M. Morin, "Iterative method for the design of arbitrary multi-channel fiber Bragg gratings," OSA Topical meeting BGPP2007, Paper. BTuB1 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The 51-channel phase-only sampling function. (a) Phase distribution, and (b) Channel spectrum.

Fig. 2.
Fig. 2.

Design results of the simultaneous dispersion and dispersion-slope compensation FBG without reflection equalization. (a) Dispersions spectrum, and (b) Reflection spectrum.

Fig. 3.
Fig. 3.

Calculation results for the reflection spectrum equalization. (a). Phase distribution, and (b). Spectrum amplitude.

Fig. 4.
Fig. 4.

(a). Equalized reflection spectrum for 51-channel FBG. (b). The reflections of the 51 channels with and without reflection equalizations. R_E: Reflection equalization.

Fig. 5.
Fig. 5.

(a). Group delay spectra with and without the reflection equalization. (b). Group delay ripples of the central channel with and without reflection equalization. G_D: Group delay.

Fig. 6.
Fig. 6.

(a). Index modulations of the multi-channel FBGs with and without reflection equalization. (b). The first and the last channels of the equalized reflection spectra.

Tables (2)

Tables Icon

Table 1. Parameters αn , βn obtained for a 51-Channel Phase-only Sampling Function

Tables Icon

Table 2. Obtained Parameters αn, βn for Reflection Equalization

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = Re { Δ n 1 ( z ) 2 · exp ( i 2 π z Λ ( z ) ) · s ( z ) } ,
s ( z ) = m = S m exp ( i 2 m π z P ) ,
s ( z ) m = S m exp [ i 2 m π z P 0 ( 1 C s · z ) ] .
Δ n ( z ) = Re { Δ n 1 ( z ) 2 m = + exp [ i 2 π z Λ 0 ( 1 + C eff · z ) ] · S m exp [ i 2 m π z P 0 ] } ,
θ g ( z ) = n = 1 M α n cos ( 2 π n z P 0 + β n ) ,
TL = ( η × Δ n ) 2 × D 65.447 [ dB ] ,
E ( x ) = M + 1 M 1 [ S Cm ( α n , β n ) 2 S Tm 2 ] 2 ,

Metrics