Abstract

Nonlinear optical (NLO) polymers have been considered promising materials for wavelength conversion at a low pump power. However, they have not been readily adopted to practical applications due to their high absorption coefficients, especially at a shorter interacting wavelength. Our theoretical analysis proves that the influence of absorption coefficients can be mitigated significantly in cascaded wavelength conversion (CWC) processes. According to our example study, maximum conversion efficiencies for CWC can compare even with those for second-harmonic generation in many NLO polymers. Thus CWC can become a pertinent application of NLO polymers. However, to obtain such efficient CWC, several realistic problems should be resolved in practical devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
    [Crossref]
  2. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [Crossref]
  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [Crossref]
  4. M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
    [Crossref]
  5. A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
    [Crossref]
  6. M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
    [Crossref]
  7. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
    [Crossref]
  8. Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
    [Crossref]
  9. H. Sato, H. Matsuno, and I. Seo, “Enhancement of Čerenkovian second-harmonic generation power with ultraviolet irradiation-formed nonlinear optical χ(2) corrugation and channel waveguide,” J. Opt. Soc. Am. B 15, 773–780 (1998).
    [Crossref]
  10. J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
    [Crossref]
  11. S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
    [Crossref]
  12. J. Y. Do and J. J. Ju, “Polyester dendrimers carrying NLO chromophores: synthesis and optical characterization,” Macromol. Chem. Phys. 206, 1326–1331 (2005).
    [Crossref]
  13. S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
    [Crossref]
  14. S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
    [Crossref]
  15. J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
    [Crossref] [PubMed]
  16. J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
    [Crossref]
  17. M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
    [Crossref]
  18. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
    [Crossref]
  19. M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
    [Crossref]
  20. M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
    [Crossref]
  21. L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
    [Crossref]
  22. B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
    [Crossref]
  23. M.-s. Kim and C. S. Yoon, “Full characterization of third harmonic generation in CsLiB6O10 (CLBO) crystals,” in Technical Digest of the 4th Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Piscataway, 2001), Vol. II, pp. 398–399.
  24. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
    [Crossref]
  25. M.-s. Kim and C. S. Yoon, “Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6O10 crystals,” Phys. Rev. A 65, 033831-1–033831-9 (2002).
    [Crossref]
  26. S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
    [Crossref]
  27. S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
    [Crossref]
  28. S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
    [Crossref]
  29. J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
    [Crossref]

2006 (3)

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

2005 (3)

J. Y. Do and J. J. Ju, “Polyester dendrimers carrying NLO chromophores: synthesis and optical characterization,” Macromol. Chem. Phys. 206, 1326–1331 (2005).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

2004 (4)

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

2003 (4)

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

2002 (2)

M.-s. Kim and C. S. Yoon, “Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6O10 crystals,” Phys. Rev. A 65, 033831-1–033831-9 (2002).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

2001 (1)

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

2000 (2)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[Crossref]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

1999 (2)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

1998 (2)

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[Crossref]

H. Sato, H. Matsuno, and I. Seo, “Enhancement of Čerenkovian second-harmonic generation power with ultraviolet irradiation-formed nonlinear optical χ(2) corrugation and channel waveguide,” J. Opt. Soc. Am. B 15, 773–780 (1998).
[Crossref]

1997 (1)

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

1996 (1)

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

1994 (1)

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

1993 (1)

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[Crossref]

Ahn, J. T.

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

Banfi, G. P.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[Crossref]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Boulanger, B.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

Canva, M.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[Crossref]

Cha, M.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

Chang, D.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Chang, Y.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

Dalton, L. R.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Delarue, P.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Diemeer, M.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Do, J. Y.

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

J. Y. Do and J. J. Ju, “Polyester dendrimers carrying NLO chromophores: synthesis and optical characterization,” Macromol. Chem. Phys. 206, 1326–1331 (2005).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[Crossref]

Erlig, H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

Fetterman, H. R.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Fève, J. P.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Flipse, M. C.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Horsthuis, W. H. G.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Jäger, M.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Ju, J. J.

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

J. Y. Do and J. J. Ju, “Polyester dendrimers carrying NLO chromophores: synthesis and optical characterization,” Macromol. Chem. Phys. 206, 1326–1331 (2005).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

Ju, J.-J.

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

Kim, an M.-s.

J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
[Crossref]

Kim, J.

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
[Crossref]

Kim, M.-s.

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

M.-s. Kim and C. S. Yoon, “Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6O10 crystals,” Phys. Rev. A 65, 033831-1–033831-9 (2002).
[Crossref]

M.-s. Kim and C. S. Yoon, “Full characterization of third harmonic generation in CsLiB6O10 (CLBO) crystals,” in Technical Digest of the 4th Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Piscataway, 2001), Vol. II, pp. 398–399.

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

Kim, S.-I.

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

Kobayahsi, T.

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

Lee, M.-H.

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

Marnier, G.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Matsuno, H.

Meth, J.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Möhlmann, G. R.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Morita, S.

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

Oh, M.-C.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Otomo, A.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

Park, S.

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

Park, S. K.

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

J. J. Ju, J. Kim, J. Y. Do, M.-s. Kim, S. K. Park, S. Park, and M.-H. Lee, “Second-harmonic generation in periodically poled nonlinear polymer waveguides,” Opt. Lett. 29, 89–91 (2004).
[Crossref] [PubMed]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Rousseau, I.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Sato, H.

Seo, I.

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[Crossref]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Shirakawa, A.

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

Stegeman, G.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[Crossref]

Stegeman, G. I.

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Steier, W. H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Szep, A.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Tan, H.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[Crossref]

Tomaselli, A.

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[Crossref]

Torruellas, W. E.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Tsap, B.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Yoon, C. S.

M.-s. Kim and C. S. Yoon, “Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6O10 crystals,” Phys. Rev. A 65, 033831-1–033831-9 (2002).
[Crossref]

M.-s. Kim and C. S. Yoon, “Full characterization of third harmonic generation in CsLiB6O10 (CLBO) crystals,” in Technical Digest of the 4th Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Piscataway, 2001), Vol. II, pp. 398–399.

Zhang, C.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Zhang, H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Zhang, L.

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

Zhang, Q.

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[Crossref]

Appl. Phys. Lett. (6)

A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[Crossref]

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
[Crossref]

Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4’-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998).
[Crossref]

J. J. Ju, S. K. Park, S. Park, J. Kim, M.-s. Kim, M.-H. Lee, and J. Y. Do, “Wavelength conversion in nonlinear optical polymer waveguides,” Appl. Phys. Lett. 88, 241106-1–241106-3 (2006).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal bias operation in electro-optic polymer modulators,” Appl. Phys. Lett. 83, 827–829 (2003).
[Crossref]

H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
[Crossref]

Chem. Phys. Lett. (1)

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Evaluation of nonlinear optical polymers for secondharmonic generation: toward the balance of absorption and nonlinearity against intrinsic trade-off,” Chem. Phys. Lett. 417, 277–281 (2006).
[Crossref]

ETRI J. (2)

M.-H. Lee, J. J. Ju, S. Park, J. Y. Do, and S. K. Park, “Polymer-based devices for optical communications,” ETRI J. 24, 259–269 (2002).
[Crossref]

M.-s. Kim, J. T. Ahn, J. Kim, J. J. Ju, and M.-H. Lee, “Chromatic dispersion compensation via mid-span spectal inversion with periodically poled LiNbO3 wavelength converter at low pump power,” ETRI J. 27, 312–318 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[Crossref]

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7, 826–835 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, and M.-H. Lee, “Thermal stability enhancement of electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 93–95 (2004).
[Crossref]

S. Park, J. J. Ju, J. Y. Do, S. K. Park, J. T. Ahn, S.-I. Kim, and M.-H. Lee, “16-arrayed electrooptic polymer modulator,” IEEE Photon. Technol. Lett. 16, 1834–1836 (2004).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Absorption effects on second-harmonic generation and cascaded wavelength conversion in nonlinear optical polymers,” J. Nonlinear Opt. Phys. Mater. 13, 367–371 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity in KTiOPO4,” J. Phys. B: At. Mol. Opt. Phys. 32, 475–488 (1999).
[Crossref]

Jpn. J. Appl. Phys. (1)

L. Zhang, A. Shirakawa, S. Morita, and T. Kobayahsi, “Nonlinear phase shift and detuning by second- and thirdorder nonlinearities,” Jpn. J. Appl. Phys. 36, Part 2, L1294–L1296 (1997).
[Crossref]

Jpn. J. Appl. Phys. 42, Part (1)

J. Kim, J. J. Ju, and an M.-s. Kim, “Distributions of electric field and induced nonlinearity in periodic poling,” Jpn. J. Appl. Phys. 42, Part 1, 7304–7312 (2003).
[Crossref]

Macromol. Chem. Phys. (2)

J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, “Improved electro-optic effect by hyperbranched chromophore structures in side-chain polyimide,” Macromol. Chem. Phys. 204, 410–416 (2003).
[Crossref]

J. Y. Do and J. J. Ju, “Polyester dendrimers carrying NLO chromophores: synthesis and optical characterization,” Macromol. Chem. Phys. 206, 1326–1331 (2005).
[Crossref]

Macromol. Rapid Commun. (1)

S. K. Park, J. Y. Do, J.-J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Transparent nonlinear optical polymers for all-optical wavelength converters in optical fiber communications,” Macromol. Rapid Commun. 24, 772–777 (2003).
[Crossref]

Mater. Lett. (1)

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5 µm,” Mater. Lett. 59, 2872–2875 (2005).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

M.-s. Kim and C. S. Yoon, “Theoretical analysis of third-harmonic generation via direct third-order and cascaded second-order processes in CsLiB6O10 crystals,” Phys. Rev. A 65, 033831-1–033831-9 (2002).
[Crossref]

React. Funct. Polym. (1)

S. K. Park, J. Y. Do, J. J. Ju, S. Park, M.-s. Kim, and M.-H. Lee, “Polyamic alkyl ester system promising for side-chain electro-optic polymer,” React. Funct. Polym. 66, 974–983 (2006).
[Crossref]

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[Crossref]

Other (2)

M.-s. Kim, J. J. Ju, S. K. Park, J. Y. Do, and M.-H. Lee, “Balancing the trade-off between absorption and nonlinearity in NLO polymers for practical applications,” in Linear and Nonlinear Optics of Organic Materials V, M. Eich, ed., Proc. SPIE5935, 593509-1–593509-8 (2005).
[Crossref]

M.-s. Kim and C. S. Yoon, “Full characterization of third harmonic generation in CsLiB6O10 (CLBO) crystals,” in Technical Digest of the 4th Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Piscataway, 2001), Vol. II, pp. 398–399.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Loss factors for phase-matched (a) SHG and (b) CWC processes as functions of the absorption coefficients at the pump and SH waves.

Fig. 2.
Fig. 2.

The benefit factor of the CWC process, relative to the SHG process, as a function of absorption coefficients.

Fig. 3.
Fig. 3.

The optimum CWC interaction length calculated numerically as a function of the absorption coefficients.

Fig. 4.
Fig. 4.

The ratio between the optimum CWC and SHG interaction lengths as a function of the absorption coefficients.

Fig. 5.
Fig. 5.

The coefficient h max CWC calculated for a typical NLO polymer at λp =1.55 µm and λs =1.56 µm when the values of d eff and Ip (0) are given in the units of pm/V and kW/cm2, respectively: (a) a three-dimensional contour map and (b) a two-dimensional plot for several specific α p values.

Fig. 6.
Fig. 6.

The maximum CWC efficiency calculated under the condition of d eff=10 pm/V and Ip (0)=100 kW/cm2.

Fig. 7.
Fig. 7.

Relational comparison between the maximum conversion efficiencies of the CWC and SHG processes, which can be used as a figure-of-merit of NLO polymers for the application to CWC.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d A l d z = α l 2 A l + i ω l n l c ( m , n ) d eff A m A n .
A p A s , A sh A c ,
I sh ( z ) = 8 π 2 d eff 2 c ε 0 n p 2 n sh λ p 2 I p 2 ( 0 ) z 2 𝓛 SHG ( Z )
I c ( z ) = 16 π 4 d eff 4 c 2 ε 0 2 n p 2 n sh 2 n s n c λ p 2 λ c 2 I p 2 ( 0 ) I s ( 0 ) z 4 CWC ( Z )
SHG ( z ) = exp [ ( α sh + 2 α p ) z 2 ] { sinh [ ( α sh 2 α p ) z 4 ] ( α sh 2 α p ) z 4 } 2
CWC ( z ) = exp ( α c z ) [ ( α sh 2 α p ) z 4 ] 2 [ g ( ( α sh + α s α c ) z ) g ( ( 2 α p + α s α c ) z ) ] 2
exp ( α p z ) [ ( α sh 2 α p ) z 4 ] 2 [ g ( α sh z ) g ( 2 α p z ) ] 2 ,
g ( x ) exp ( x 4 ) sinh ( x 4 ) x 4 .
η CWC ( z ) 1 4 η SHG 2 ( z ) CWC ( z ) SHG 2 ( z ) .
( 1 + α p α sh ) exp ( α sh z CWC max 2 ) α p α sh = 3 2 exp ( α p z CWC max ) 1 2 .
η CWC max = h CWC max ( α p , α sh ) d eff 4 I p 2 ( 0 ) ,
η CWC max ( in d B ) = h CWC max ( in d B ) + 40 log d eff + 20 log I p ( 0 )
η SHG ( z ) c ε 0 n p 2 n sh α p 2 λ p 2 32 π 2 d eff 2 I p ( 0 )
z z SHG max .
η SHG ( z ) · η CWC ( z ) c ε 0 n s n c n sh α s 2 λ s 2 32 π 2 d eff 2 I p ( 0 ) · exp ( α s z )
η SHG ( z ) 1 2 α p z SHG 1 2 ( z )

Metrics