Abstract

We investigate transmission efficiency and finite size effects for the subwavelength hole arrays. Experiments and simulations show how the finite size effects depend strongly on the hole diameter. The transmission efficiency reaches an asymptotic upper value when the array is larger than the surface plasmon propagation length on the corrugated surface. By comparing the transmission of arrays with that of the corresponding single holes, the relative enhancement is found to increase as the hole diameter decreases. In the conditions of the experiments the enhancement is one to two orders of magnitude but there is no fundamental upper limit to this value.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
    [Crossref]
  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
    [Crossref] [PubMed]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
    [Crossref] [PubMed]
  4. R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107 (2001).
    [Crossref]
  5. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
    [Crossref]
  6. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
    [Crossref]
  7. F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475 (2002).
  8. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
    [Crossref] [PubMed]
  9. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332 (2005).
    [Crossref] [PubMed]
  10. F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [Crossref]
  11. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
    [Crossref]
  12. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
    [Crossref]
  13. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
    [Crossref] [PubMed]
  14. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
    [Crossref]
  15. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
    [Crossref]
  16. J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
    [Crossref]
  17. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
    [Crossref]
  18. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
    [Crossref]
  19. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [Crossref]
  20. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
    [Crossref]
  21. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
    [Crossref]
  22. E.D. Palik, Handbook of Optical Constants of Solids (London, Academic1985)
  23. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [Crossref]
  24. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [Crossref] [PubMed]
  25. C. Obermüller and K. Karrai, “Far field characterisation of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408 (1995).
    [Crossref]
  26. E. Popov, M. Nevière, A. Sentenac, N. Bonod, A. L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, “Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen,” J. Opt. Soc. Am. A 24, 339 (2007).
    [Crossref]
  27. C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
    [Crossref]
  28. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
    [Crossref]
  29. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
    [Crossref]
  30. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
    [Crossref]
  31. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
    [Crossref]

2008 (1)

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
[Crossref]

2007 (4)

E. Popov, M. Nevière, A. Sentenac, N. Bonod, A. L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, “Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen,” J. Opt. Soc. Am. A 24, 339 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
[Crossref]

2006 (3)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

2005 (6)

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

E. Popov, N. Bonod, M. Nevière, H. Rigneault, P.-F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet,” Appl. Opt. 44, 2332 (2005).
[Crossref] [PubMed]

2004 (4)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

2003 (3)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
[Crossref]

2002 (1)

2001 (3)

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

1995 (2)

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

C. Obermüller and K. Karrai, “Far field characterisation of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408 (1995).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Abstreiter, G.

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Aizpurua, J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Bonod, N.

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

Catrysse, P. B.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[Crossref]

Chaumet, P.

de Abajo, F. J. García

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475 (2002).

de la Chapelle, M.L.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Degiron, A.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
[Crossref]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
[Crossref]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Ebbesen, T.W.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Fan, S.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[Crossref]

Fehrembach, A. L.

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
[Crossref]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Gordon, R.

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]

Henzie, J.

J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
[Crossref]

Hillenbrand, R.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Käll, M.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Karrai, K.

C. Obermüller and K. Karrai, “Far field characterisation of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408 (1995).
[Crossref]

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

Koerkamp, K. J. Klein

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

Kolb, G.

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

Kumar, L. K.

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Laluet, J.-Y.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

Lee, M. H.

J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
[Crossref]

Lenne, P.-F.

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Lienau, C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

Moreno, Esteban

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Nevière, M.

Obermüller, C.

C. Obermüller and K. Karrai, “Far field characterisation of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408 (1995).
[Crossref]

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

Odom, T.W.

J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
[Crossref]

Pakizeh, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (London, Academic1985)

Park, J.W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Park, Q.H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Popov, E.

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

Przybilla, F.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

Rigneault, H.

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
[Crossref]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

Sentenac, A.

Sepulveda, B.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Shin, H.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
[Crossref]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Wannemacher, R.

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107 (2001).
[Crossref]

Wenger, J.

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
[Crossref]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16, 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

Yee, K.J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]

C. Obermüller and K. Karrai, “Far field characterisation of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408 (1995).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]

J. Opt. A: Appl. Opt. (1)

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T.W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Appl. Opt. 8, 458 (2006).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C 111, 1207 (2007).
[Crossref]

Nat. Nanotechnol. (1)

J. Henzie, M. H. Lee, and T.W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549 (2007).
[Crossref]

Nat. Phys. (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120 (2006).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[Crossref]

Opt. Commun. (4)

R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun. 195, 107 (2001).
[Crossref]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61 (2004).
[Crossref]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1 (2001).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331 (2003).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Phys. Rev. B (6)

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005).
[Crossref]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. B 77, 075401 (2008).
[Crossref]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M.L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B 72, 045421 (2005).
[Crossref]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, Esteban Moreno, L. K. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Phys. Rev. Lett. (4)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Ultramicroscopy (1)

C. Obermüller, K. Karrai, G. Kolb, and G. Abstreiter, “Transmitted radiation through a subwavelength-sized tapered optical fiber tip,” Ultramicroscopy 61, 171 (1995).
[Crossref]

Other (1)

E.D. Palik, Handbook of Optical Constants of Solids (London, Academic1985)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(Color online) (a) Experimental transmission spectra for finite size arrays made of 5×5, 11×11, 21×21 and 31×31 holes. The arrays were milled in thick 275nm suspended Ag film with a period P=600nm and a hole diameter d=268nm. Transmissions are normalized to the hole area. The ticks indicate the position of main resonances labelled according the index (i, j) presented in Eq. (1). (b) Transmission spectra, normalized also to the area occupied by the holes, obtained from the numerical simulations using the modal expansion (ME) formalism. The geometrical parameters are the same as in the experiments. Inset: Comparison of ME and finite difference time domain (FDTD) calculations for the infinite array.

Fig. 2.
Fig. 2.

(a) Experimental normalized maximum transmitted intensities as a function of the number of holes (N) for increasing hole diameters (d=216, 268 and 294nm). (b) Experimental full width at half maximum (FWHM) corresponding to the data presented in panel (a). (c) and (d) Results of the numerical simulations using the same geometrical parameters as in the experiments presented in panel (a) and (b). Errors bars are determined from the data dispersions obtained from several measurements on separate structures on a test sample.

Fig. 3.
Fig. 3.

(a) and (b) Scanning electron microscopy images of an array of 40×40 holes (P=430nm and d=300nm) milled through a 295nm thick Au film. (c) Corresponding single hole. Images presented in panels (b) and (c) have the same scale. As it can be seen in panels (b) and (c), geometrical parameters of the holes are as identical as possible at the level of the array or at the single hole level.

Fig. 4.
Fig. 4.

(Color online) Transmission spectra of a d=300nm single hole milled in a 295nm thick Au film obtained by increasing the numerical aperture of the collecting objective. Each curve is an average of the spectra of 3 isolated holes of the same dimensions. Inset: Measured transmission as a function of the solid angle of collection evaluated at 600nm and 800nm.

Fig. 5.
Fig. 5.

(Color online) (a) and (b) Respectively experimental transmission spectra of an array of 40×40 holes (P=430nm), and a single hole made in the same 295nm Au film with increasing diameter (d=150, 200, 250 and 300nm). The film was deposited on a glass substrate and covered with an index matching fluid (n=1.53). The increase of transmission and of the noise in the long wavelength limit mainly visible for the d=150nm hole correspond to the noise level of our experimental setup which typically increase with the wavelength. For all the structures, the transmitted light as been collected using the same objective (Nikon Plan Fluor 100×) with numerical aperture fixed to 1.3. Each single hole curve is an average of the spectra of 3 isolated holes of the same dimensions. (c) and (d) Corresponding theoretical results. All the data are presented in logarithmic scale.

Fig. 6.
Fig. 6.

(Color online) (a) Ratio of the transmission of the array to the transmission of the corresponding single hole for d=150, 200, 250 and 300nm. (b) Corresponding theoretical results. All the data are presented in logarithmic scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ ( i , j ) = P i 2 + j 2 ε m ε d ε m + ε d

Metrics