Abstract

The worldwide first all-fiber THz time-domain spectrometer for operation at 1.5 µm is presented. Applications up to 3 THz are demonstrated. Key devices are photoconductive antennas based on novel LT InGaAs/InAlAs multi-layer structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
    [CrossRef]
  2. D. Mittleman, ed., "Terahertz Imaging," in Sensing with Terahertz Radiation, ISBN 3-540-43110-1 (Springer Verlag, Berlin-Heidelberg, New York, 2003), pp. 117-153.
  3. I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)
  4. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005)
    [CrossRef]
  5. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
    [CrossRef]
  6. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
    [CrossRef]
  7. R. Wilk, M. Mikulics, K. Biermann, H. Künzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, "THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 ?m fibre laser," paper CThR2 on Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, May 6-11, 2007
    [CrossRef]

2007

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

2005

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005)
[CrossRef]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

1992

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
[CrossRef]

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Böttcher, J.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Duling, I.

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

Gibis, R.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

Gupta, B. S.

B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
[CrossRef]

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Künzel, H.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

Mourou, G. A.

B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
[CrossRef]

Suzuki, M.

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005)
[CrossRef]

Tonouchi, M.

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005)
[CrossRef]

Urmann, G.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

Whitaker, J. F.

B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
[CrossRef]

Zimdars, D.

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

Appl. Phys. Lett.

I. Duling and D. Zimdars, "Compact TD-THz systems offer flexible, turnkey imaging solutions," Laser Focus World, April 2007. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs THz emitters for 1.56 ?m wavelength excitation," Appl. Phys. Lett. 86, 051104 (2005)

M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005)
[CrossRef]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510 (2005)
[CrossRef]

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, "Material properties of In0.53Ga0.47As on InP by low-Temperature Molecular Beam Epitaxy," Appl. Phys. Lett. 61, 1347 (1992)
[CrossRef]

IEEE J. Quantum Electron.

B. S. Gupta, J. F. Whitaker, and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures," IEEE J. Quantum Electron. 28, 2464 (1992)
[CrossRef]

Other

D. Mittleman, ed., "Terahertz Imaging," in Sensing with Terahertz Radiation, ISBN 3-540-43110-1 (Springer Verlag, Berlin-Heidelberg, New York, 2003), pp. 117-153.

R. Wilk, M. Mikulics, K. Biermann, H. Künzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, "THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 ?m fibre laser," paper CThR2 on Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, May 6-11, 2007
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Scheme of fiber based optical THz system

Fig. 2.
Fig. 2.

Carrier concentration of LT InGaAs

Fig. 3.
Fig. 3.

Be doping and carrier concentration

Fig. 4.
Fig. 4.

(a). embedded photoconductor; (b). electron trapping; (c). multilayer structure

Fig. 5.
Fig. 5.

Resistivity of differently processed InGaAs

Fig. 6.
Fig. 6.

Emitter module

Fig. 7.
Fig. 7.

Scheme of spectrometer system

Fig. 8.
Fig. 8.

Autocorrelator trace after 10 m SMF, at the antenna position

Fig. 9.
Fig. 9.

(a). Pulse trace under nitrogen purging; (b). Fourier spectrum, extending up to 3 THz

Fig. 10.
Fig. 10.

(a). Pulse and FFT without nitrogen purging; (b). associated absorption spectrum

Fig. 11.
Fig. 11.

THz through box

Metrics