Abstract

Numerical design strategies are presented to achieve efficient broad or narrow band-pass filters based on index-guiding, solid-core, and single-mode photonic crystal fibers (PCFs). The filtering characteristics have been verified through BPM solver. By scaling the pitch constant, the bandpass window can be shifted accordingly. The fiber design constitutes a fluorine-doped central core, enlarged air-holes surrounding the down-doped core, and small air-holes in the cladding. The proposed bandpass filter is based on controlling the leakage losses, so one can tune filter characteristics simply by changing its length. From numerical simulations we show that for large values of air-hole diameter in the first ring, the bandpass window is narrow, while for low doping concentration and small sized air-holes in the first ring, bandpass window is very broad. We also simulate how the hole-size and number of rings in the PCF cladding affects the device characteristics. We find that a 5-cm long PCF with down-doped core and eleven rings of air-holes can result in ~440 nm 3-dB bandwidth with more than 90% of transmission. The longer device has reduced transmission and smaller 3-dB bandwidth. Tolerance analysis has also been performed to check the impact of fiber tolerances on the performance of the PCF bandpass filter. It has been observed that the decrement in cladding holediameter by 1% reduces the transmission to 21% from its peak value of 93%, however ±1% tolerance in the inner hole-diameter degrades the transmission to 75% from its peak.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Morishita, "Optical fiber devices using dispersive materials," J. Lightwave Technol. 7, 198-201 (1989).
    [CrossRef]
  2. K. Morishita, "Bandpass and band-rejection filters using dispersive fibers," J. Lightwave Technol. 7, 816-819 (1989).
    [CrossRef]
  3. C. J. Chung and A. Safaai-Jazi, "Narrowband spectral filter made of W-index and step index fibers," J. Lightwave Technol. 10, 42-45 (1992).
    [CrossRef]
  4. J. W. Yu and K. Oh, "New in-line fiber bandpass filters using high silica dispersive optical fibers," Opt. Commun. 204, 111-118 (2002).
    [CrossRef]
  5. B. Wu and P. L. Chu, "Narrow bandpass filter with gain by use of twin-core rare-earth-doped fiber," Opt. Lett. 18, 1913-1915 (1993).
    [CrossRef] [PubMed]
  6. M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
    [CrossRef]
  7. F. Bakhti and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," J. Lightwave Technol. 15, 1433-1437 (1997).
  8. K. Saitoh, N. J. Florous, M. Koshiba, and M. Skorobogaity, "Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers," Opt. Express 13, 10327-10335 (2005).
    [CrossRef] [PubMed]
  9. N. J. Florous, K. Saitoh, T. Murao, M. Koshiba, and M. Skorobogatiy, "Non-proximity resonant tunneling in multi-core photonic bandgap fibers: an efficient mechanism for engineering highly selective ultra-narrow bandpass filters," Opt. Express 14, 4861-4872 (2006).
    [CrossRef] [PubMed]
  10. F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
    [CrossRef]
  11. P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
    [CrossRef]
  12. P. St. J. Russell, "Photonic crystal fibers," Science 288, 358-362 (2003).
    [CrossRef]
  13. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic, The Netherlands, 2003).
    [CrossRef]
  14. B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Fundamental-mode cut-off in a photonic crystal fiber with a depressed-index core," Opt. Lett. 26, 1469-1471 (2001).
    [CrossRef]
  15. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
    [CrossRef]
  16. K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).
    [CrossRef]

2006 (1)

2005 (2)

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

K. Saitoh, N. J. Florous, M. Koshiba, and M. Skorobogaity, "Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers," Opt. Express 13, 10327-10335 (2005).
[CrossRef] [PubMed]

2003 (1)

P. St. J. Russell, "Photonic crystal fibers," Science 288, 358-362 (2003).
[CrossRef]

2002 (2)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

J. W. Yu and K. Oh, "New in-line fiber bandpass filters using high silica dispersive optical fibers," Opt. Commun. 204, 111-118 (2002).
[CrossRef]

2001 (2)

2000 (1)

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

1997 (1)

F. Bakhti and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," J. Lightwave Technol. 15, 1433-1437 (1997).

1996 (1)

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

1993 (1)

1992 (1)

C. J. Chung and A. Safaai-Jazi, "Narrowband spectral filter made of W-index and step index fibers," J. Lightwave Technol. 10, 42-45 (1992).
[CrossRef]

1989 (2)

K. Morishita, "Optical fiber devices using dispersive materials," J. Lightwave Technol. 7, 198-201 (1989).
[CrossRef]

K. Morishita, "Bandpass and band-rejection filters using dispersive fibers," J. Lightwave Technol. 7, 816-819 (1989).
[CrossRef]

Alavie, A. T.

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

Arriaga, J.

Bakhti, F.

F. Bakhti and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," J. Lightwave Technol. 15, 1433-1437 (1997).

Birks, T. A.

Brechet, F.

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

Chu, P. L.

Chung, C. J.

C. J. Chung and A. Safaai-Jazi, "Narrowband spectral filter made of W-index and step index fibers," J. Lightwave Technol. 10, 42-45 (1992).
[CrossRef]

de Sterke, C. M.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

Eggleton, B. J.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

Florous, N. J.

Knight, J. C.

Koshiba, M.

Laproux, P.

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

Maaskant, R.

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

Mangan, B. J.

Marcou, J.

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

Morishita, K.

K. Morishita, "Optical fiber devices using dispersive materials," J. Lightwave Technol. 7, 198-201 (1989).
[CrossRef]

K. Morishita, "Bandpass and band-rejection filters using dispersive fibers," J. Lightwave Technol. 7, 816-819 (1989).
[CrossRef]

Murao, T.

Oh, K.

J. W. Yu and K. Oh, "New in-line fiber bandpass filters using high silica dispersive optical fibers," Opt. Commun. 204, 111-118 (2002).
[CrossRef]

Ohn, M. M.

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

Pagnoux, D.

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

Roy, P.

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

Russell, P. St. J.

Safaai-Jazi, A.

C. J. Chung and A. Safaai-Jazi, "Narrowband spectral filter made of W-index and step index fibers," J. Lightwave Technol. 10, 42-45 (1992).
[CrossRef]

Saitoh, K.

Sansonetti, P.

F. Bakhti and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," J. Lightwave Technol. 15, 1433-1437 (1997).

Skorobogaity, M.

Skorobogatiy, M.

Steel, M. J.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

Steinvurzel, P.

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

Wu, B.

Xu, M. G.

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

Yu, J. W.

J. W. Yu and K. Oh, "New in-line fiber bandpass filters using high silica dispersive optical fibers," Opt. Commun. 204, 111-118 (2002).
[CrossRef]

Electron. Lett. (3)

M. G. Xu, A. T. Alavie, R. Maaskant, and M. M. Ohn, "Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing," Electron. Lett. 32, 1918-1919 (1996).
[CrossRef]

F. Brechet, P. Laproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of single mode depressed-core index photonic bandgap fibre," Electron. Lett. 36, 870-872 (2000).
[CrossRef]

P. Steinvurzel, B. J. Eggleton, C. M. de Sterke, and M. J. Steel, "Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibers," Electron. Lett. 41, 463-464 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002).
[CrossRef]

J. Lightwave Technol. (5)

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

F. Bakhti and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," J. Lightwave Technol. 15, 1433-1437 (1997).

K. Morishita, "Optical fiber devices using dispersive materials," J. Lightwave Technol. 7, 198-201 (1989).
[CrossRef]

K. Morishita, "Bandpass and band-rejection filters using dispersive fibers," J. Lightwave Technol. 7, 816-819 (1989).
[CrossRef]

C. J. Chung and A. Safaai-Jazi, "Narrowband spectral filter made of W-index and step index fibers," J. Lightwave Technol. 10, 42-45 (1992).
[CrossRef]

Opt. Commun. (1)

J. W. Yu and K. Oh, "New in-line fiber bandpass filters using high silica dispersive optical fibers," Opt. Commun. 204, 111-118 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 288, 358-362 (2003).
[CrossRef]

Other (1)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic, The Netherlands, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic view of the proposed PCF band-pass filter.

Fig. 2.
Fig. 2.

(a). Effective index variation for a fluorine-doped PCF with d’/Λ=0.34, d/Λ=0.30, and Δ=-0.004, (b) magnified view of effective index variation before the short wavelength cut-off.

Fig. 3.
Fig. 3.

Variation of short- and long-wavelength cut-offs in (a) d/Λ=0.40, (b) d/Λ=0.35, (c) d/Λ=0.30, (d) d/Λ=0.25 for various doping levels, Δ=-0.001, -0.002, -0.003, and -0.004. The solid and dotted curves stand for short- and long-wavelength cut-offs, respectively.

Fig. 4.
Fig. 4.

Variation of short- and long-wavelength cut-offs (a) for two different cladding air-hole diameters namely, d/Λ=0.40 and 0.35, and (b) for three different cladding air-hole diameters viz. d/Λ=0.40, 0.35, 0.30 at a fixed doping concentration Δ=-0.004. The solid and dotted curves stand for short- and long-wavelength cut-offs, respectively.

Fig. 5.
Fig. 5.

Modal field distributions in PCF (d′/Λ=0.475, d/Λ=0.35, Λ=3.2 µm, Δ=-0.004, N=11) at (a) 1.0 µm, (b) 1.35 µm, short-wavelength cut-off, (c) 1.5 µm central wavelength, (d) 1.66 µm long-wavelength cut-off, and (e) 2.0 µm beyond long-wavelength cut-off.

Fig. 6.
Fig. 6.

Transmission characteristics of the PCF band-pass filter (d′/Λ=0.475, d/Λ=0.35, Λ=3.2 µm, Δ=-0.004) with air-hole rings N as a parameter.

Fig. 7.
Fig. 7.

(a). Transmission characteristics of the PCF bandpass filter evaluated through modal analysis as a fiber length parameter and (b) BPM and FEM simulated transmission characteristics.

Fig. 8.
Fig. 8.

Impact of tolerances in d or d′ on the transmission characteristics of the PCF bandpass filter (d′/Λ=0.475, d/Λ=0.35, Δ=-0.004, and N=11). The peak transmission drops drastically for a -1% change in the cladding hole-diameter d. However, for a 1% change in the inner holediameter d′, the transmission decreases by 17% from the peak transmission value of 93.3%. The decrement in the cladding hole-diameter d severely affects the transmission characteristics. However, we can use shorter length of the fiber to raise the transmission at the cost of large bandwidth.

Fig. 9.
Fig. 9.

The effect of wavelength dependency of the refractive index of silica on (a) cut-off wavelengths and (b) the transmission characteristics of the PCF bandpass filter (d′/Λ=0.475, d/Λ=0.35, Δ=-0.004, and N=11). The cut-off wavelength curves and transmission curve calculated by taking into account the wavelength-dependent refractive index of silica are shown by dotted curves with filled circles.

Metrics