Abstract

We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measurement method with a Nd:YAG crystal, before using it to compare Nd:YVO4 and Nd:GdVO4 crystals.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges
Opt. Express 16(14) 10098-10109 (2008)

Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods

Jerzy Bodzenta, Anna Kaźmierczak-Bałata, Krystyna B. Wokulska, Jacek Kucytowski, Tadeusz Łukasiewicz, and Władysław Hofman
Appl. Opt. 48(7) C46-C54 (2009)

Characterization of laser crystal Yb:CaYAlO4

Dongzhen Li, Xiaodong Xu, Haomiao Zhu, Xueyuan Chen, Wei De Tan, Jian Zhang, Dingyuan Tang, Jan Ma, Feng Wu, Changtai Xia, and Jun Xu
J. Opt. Soc. Am. B 28(7) 1650-1654 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
    [Crossref]
  2. L. Pottier, “Micrometer scale visualization of thermal waves by photoreflectance microscopy,” Appl. Phys. Lett. 64, 1618 (1994).
    [Crossref]
  3. A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
    [Crossref]
  4. J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
    [Crossref]
  5. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
    [Crossref] [PubMed]
  6. A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).
  7. L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
    [Crossref]
  8. J.R. O’connor, “Unusual crystal field energy levels and efficient laser properties of YVO4:Nd3+,” Appl. Phys. Lett.9, 407.
  9. A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
    [Crossref]
  10. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).
  11. C. Kränkel, et al., “Continuous wave laser operation of Yb3+:GdVO4,” Appl. Phys. B 79, 543–546 (2004).
    [Crossref]
  12. P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
    [Crossref]
  13. W. Koechner, “Solid State Laser Engineering,” 5th version, (Springer, 1999).
  14. A. Cousins , “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057 (1992).
    [Crossref]
  15. S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
    [Crossref]
  16. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” J. of Quantum Electron. 29, 1457–1459 (1993).
    [Crossref]
  17. I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
    [Crossref]
  18. R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
    [Crossref]
  19. T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).
  20. A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

2007 (1)

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

2006 (2)

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

2004 (2)

C. Kränkel, et al., “Continuous wave laser operation of Yb3+:GdVO4,” Appl. Phys. B 79, 543–546 (2004).
[Crossref]

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

2003 (3)

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

2000 (1)

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

1995 (1)

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

1994 (2)

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

L. Pottier, “Micrometer scale visualization of thermal waves by photoreflectance microscopy,” Appl. Phys. Lett. 64, 1618 (1994).
[Crossref]

1993 (2)

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” J. of Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

1992 (2)

A. Cousins , “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057 (1992).
[Crossref]

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

1991 (1)

A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
[Crossref]

1961 (1)

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

Abbott, G. L.

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Bass, M.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Bisson, J. F.

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

Butler, C. P.

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

Chai, B. H. T.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Chenais, S.

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Cousins, A.

A. Cousins , “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057 (1992).
[Crossref]

Druon, F.

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” J. of Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

Fernandez, J.

A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
[Crossref]

Forget, S.

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Fournier, D.

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

Gaume, R.

R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Higuch, M.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Hong, P.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Huang, L. X.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Huber, G.

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Ikesue, A.

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

Jenkins, R. J.

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

Jensen, T.

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Kalachev, Yu. L.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Kodaira, K.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Koechner, W.

W. Koechner, “Solid State Laser Engineering,” 5th version, (Springer, 1999).

Kränkel, C.

C. Kränkel, et al., “Continuous wave laser operation of Yb3+:GdVO4,” Appl. Phys. B 79, 543–546 (2004).
[Crossref]

Kutovoi, S. A.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Lavigne, O.

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

Lefaucheur, J.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Loutts, G.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Lutts, G. B.

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

Machida, H.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Meng, X. L.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Mévre, R.

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

Meyen, J. P.

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Mikhailov, V. A.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

O’connor, J.R.

J.R. O’connor, “Unusual crystal field energy levels and efficient laser properties of YVO4:Nd3+,” Appl. Phys. Lett.9, 407.

Ogawa, T.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Onodera, K.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Ostroumov, V. G.

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Parker, J.

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

Podreshetnikov, V. I.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Popov, P. A.

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

Pottier, L.

L. Pottier, “Micrometer scale visualization of thermal waves by photoreflectance microscopy,” Appl. Phys. Lett. 64, 1618 (1994).
[Crossref]

Poulain, M.

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

Qin, L. J.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Sagae, H.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Salazar, A.

A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
[Crossref]

Sanchez-Lavega, A.

A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
[Crossref]

Sato, Y.

Shcherbakov, I. A.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Shen, H. Y.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Shoji, I.

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

Sirota, N. N.

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

Sirotkin, A. A.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Studenikin, P. A.

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

Taira, T.

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
[Crossref] [PubMed]

Urata, Y.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Viana, B.

R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Vivien, D.

R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Vlasov, V. I.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Wada, S.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Xia, H. R.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Xu, B. C.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Zagumennyi, A. I.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Zavartsev, Yu. D.

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

Zhang, X. X.

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Zhao, P.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Zheng, G.

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

Appl. Phys. B (1)

C. Kränkel, et al., “Continuous wave laser operation of Yb3+:GdVO4,” Appl. Phys. B 79, 543–546 (2004).
[Crossref]

Appl. Phys. Lett. (2)

L. Pottier, “Micrometer scale visualization of thermal waves by photoreflectance microscopy,” Appl. Phys. Lett. 64, 1618 (1994).
[Crossref]

R. Gaume, B. Viana, and D. Vivien, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[Crossref]

Cryst. Res. Technol. (1)

L. J. Qin, X. L. Meng, H. Y. Shen, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Cousins , “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057 (1992).
[Crossref]

J. Am. Ceram. Soc. (1)

J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mévre, “Thermal conductivity of Yttria-Zirconia single crystals determined by spatially resolved infrared thermography,” J. Am. Ceram. Soc. 83, 1993–1998 (2000).
[Crossref]

J. of Appl. Phys. (2)

A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal diffusivity measurements in solids by the ‘mirage’ technique: Experimental results,” J. of Appl. Phys. 69, 1216 (1991).
[Crossref]

J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. of Appl. Phys. 32, 1679 (1961).
[Crossref]

J. of Quantum Electron. (1)

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” J. of Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

Laser Phys. (2)

A. I. Zagumennyi, G. B. Lutts, P. A. Popov, N. N. Sirota, and I. A. Shcherbakov, “The thermal conductivity of YAG and YSAG laser crystals,” Laser Phys. 3, 1064–1065 (1993).

A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Diode-pumped lasers based on GdVO4 crystal,” Laser Phys. 13, 311 (2003).

Opt. Express (1)

Opt. Mater. (1)

I. Shoji, T. Taira, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers,” Opt. Mater. 29, 1271–1276 (2007).
[Crossref]

OSA Trends in Optics and Photonics (1)

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, “879nm-LD-pumped Nd:GdVO4 laser and its thermal property,” OSA Trends in Optics and Photonics 94, 293–297 (2004).

Proceeding OSA ASSL 1994 (1)

B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F, and Sr5(VO4)3F,” Proceeding OSA ASSL 1994,  20, 41 (1994).

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, and F. Balembois, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Quantum Electron. (1)

P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,, Quantum Electron. 25, 1162 (1995).
[Crossref]

Sov. Quantum Electron. (1)

A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal, a new material for diode-pumped lasers,” Sov. Quantum Electron. 22, 1071–1072 (1992).
[Crossref]

Other (2)

W. Koechner, “Solid State Laser Engineering,” 5th version, (Springer, 1999).

J.R. O’connor, “Unusual crystal field energy levels and efficient laser properties of YVO4:Nd3+,” Appl. Phys. Lett.9, 407.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Basic scheme for an end-pumped laser crystal

Fig. 2.
Fig. 2.

Calculated absorption coefficient along the z-axis of the 1% at. doped Nd:YAG crystal, in the experimental conditions, with and without laser emission. The pump power is 25 W, the intracavity laser power is 140 W. The effect of bleaching is clearly visible without the laser, but disappears under laser operation.

Fig. 3.
Fig. 3.

Evolution of the laser extraction efficiency with the intracavity laser power.

Fig. 4.
Fig. 4.

Radial evolution of ηl and ηh parameters in a Nd:YVO4 crystal with a 300 W intracavity laser power.

Fig. 5.
Fig. 5.

Experimental setup for thermal conductivity measurement. The polarizer is only used for anisotropic crystals.

Fig. 6.
Fig. 6.

Calibration curve of a Nd:YAG crystal

Fig. 7.
Fig. 7.

Measurement and fit by a supergaussian function of the radial pump profile at the focalization point, for a magnification of 1 of the output of the diode by two doublets.

Fig. 8.
Fig. 8.

Experimental (blue), theoretical (red) and simulated (green) radial temperature profiles of the pumped face of the Nd:YAG crystal at 24 W. The theoretical curve is calculated through Eq. (8), the simulated curve is calculated by FEA.

Fig. 9.
Fig. 9.

Repetability of the thermal conductivity measurements for a Nd:YAG crystal

Fig. 10.
Fig. 10.

Principle of the Kc determination by measurements and FEA simulations

Fig. 11.
Fig. 11.

Experimental (blue) and simulated (red) temperature profiles on the c and a axes of 0.1% at. doped Nd:YVO4 crystal.

Fig. 12.
Fig. 12.

Experimental (blue) and simulated (red) temperature profiles on the c and a axes of 1% at. doped Nd:GdVO4 crystal.

Tables (4)

Tables Icon

Table 1. Incident pump power and absorption coefficients for the 0.1% at. doped crystals.

Tables Icon

Table 2. Thermal conductivities results for 0.1% at. doped vanadate crystals

Tables Icon

Table 3. Incident pump power and absorption coefficients for the 1% at. doped vanadate crystals.

Tables Icon

Table 4. Thermal conductivities results for 1% at. doped crystals

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

K c d T d n = H . ( T c r y s t a l _ e d g e T m o u n t )
T ( r , z ) T ( r 0 , z ) = η h 4 π . K c d P d z ( z ) . f ( r , z )
{ f ( r , z ) = 1 n [ r 0 2 w p 2 ( z ) ] + 1 r 2 w p 2 ( z )   if r < w p ( z ) f ( r , z ) = 1 n ( r 0 2 r 2 ) if r > w p ( z )
d I p d z = α . I p = α N S ( 1 + I I l s a t ) 1 + I p I p s a t + I I l s a t . I p
I p s a t = 1 ( σ a b s ( λ p ) + σ e m ( λ p ) ) . τ
I l s a t = 1 σ e m ( λ l ) . τ
d I p d z = α N S . I p
d P d z ( z = 0 ) = α N S . P 0
η h = 1 η p [ ( 1 η l ) η r ( λ p λ f ) + η l ( λ p λ l ) ]
η l = σ e I σ e I + 1 ( η r . τ )
η h = 1 λ p λ l
T ( r , z = 0 ) T ( r 0 , z = 0 ) = 1 K c . 1 4 π ( 1 - λ p λ l ) . ( α . P 0 ) . f ( r , z = 0 )
w p 2 ( z ) = w p 0 2 + ( M p 2 . λ p ) 2 π 2 . w p 0 2 . ( z z 0 ) 2
d K c K c = ( d ( Δ T ) Δ T ) 2 + ( d ( α P 0 ) α P 0 ) 2 + ( d f ( r , z ) f ( r , z ) ) 2

Metrics