Abstract

We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Chen and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
    [CrossRef]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
    [CrossRef]
  4. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).
  5. S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
    [CrossRef]
  6. M. Kraus, S. Collmer, S. Sommer, A. Michalowski, and F. Dausinger, "Microdrilling in steel with ultrashort laser pulses at 1064 nm and 532 nm," in Proceedings of the Fourth International WLT-Conference on Lasers in Manfacturing 2007 (Munich, 2007), pp. 639-644.
  7. D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
    [CrossRef]
  8. S. Weiler, J. Stollhof, D. Eckert, J. Kleinbauer, D. H. Sutter, and M. Kumkar, "Taking advantage of disk laser technology for industrial micro processing," in Proceedings of the Fourth International WLT-Conference on Lasers in Manfacturing 2007 (Munich, 2007), pp. 593-596.
  9. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule Pulse Energy High Repetition Rate Femtosecond Fiber CPA System," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  10. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
    [CrossRef]
  11. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
    [CrossRef]
  12. R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
    [CrossRef]
  13. J. König, S. Nolte, and A. Tünnermann, "Plasma evolution during metal ablation with ultrashort laser pulses," Opt. Express 13, 10597-10607 (2005).
    [CrossRef] [PubMed]
  14. D. Bäuerle, Laser Processing and Chemistry, 2nd ed, (Springer-Verlag Berlin, 1996), Chap. 7.
    [PubMed]
  15. R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
    [CrossRef]
  16. H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
    [CrossRef]
  17. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
    [CrossRef]
  18. A. Y. Vorobyev and C. Guo, "Enhanced energy coupling in femtosecond laser-metal interactions at high intensities," Opt. Express 14, 13113-13119 (2006).
    [CrossRef] [PubMed]

2007 (2)

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule Pulse Energy High Repetition Rate Femtosecond Fiber CPA System," Opt. Lett. 32, 3495-3497 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Y. Vorobyev and C. Guo, "Enhanced energy coupling in femtosecond laser-metal interactions at high intensities," Opt. Express 14, 13113-13119 (2006).
[CrossRef] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

2005 (2)

C. Y. Chen and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

J. König, S. Nolte, and A. Tünnermann, "Plasma evolution during metal ablation with ultrashort laser pulses," Opt. Express 13, 10597-10607 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
[CrossRef]

2002 (1)

H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
[CrossRef]

2000 (2)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

1999 (2)

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

1997 (1)

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

1991 (1)

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

Breitling, D.

D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
[CrossRef]

Chen, C. Y.

C. Y. Chen and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

Chichkov, B. N.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Crawford, T. H. R.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

Dausinger, F.

D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
[CrossRef]

Eidam, T.

Fallnich, C.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Gilchrist, K. E.

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

Graves, R. S.

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

Greif, R.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

Guo, C.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced energy coupling in femtosecond laser-metal interactions at high intensities," Opt. Express 14, 13113-13119 (2006).
[CrossRef] [PubMed]

Gupta, M. C.

C. Y. Chen and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

Haugen, H. K.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Jacobs, H.

Kamlage, G.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Ki, H.

H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
[CrossRef]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

Kollie, T. G.

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

König, J.

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

Limpert, J.

Liu, H. C.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

Mao, S. S.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

Mao, X.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

Mao, X. L.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

Mazumder, J.

H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
[CrossRef]

McElroy, D. L.

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

Mohanty, P. S.

H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Momma, G.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Nolte, S.

J. König, S. Nolte, and A. Tünnermann, "Plasma evolution during metal ablation with ultrashort laser pulses," Opt. Express 13, 10597-10607 (2005).
[CrossRef] [PubMed]

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Ostendorf, A.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Preston, J. S.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Röser, F.

Rothhardt, J.

Ruf, A.

D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
[CrossRef]

Russo, R. E.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

Schimpf, D. N.

Schmidt, O.

Tünnermann, A.

von Alvensleben, F.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Enhanced energy coupling in femtosecond laser-metal interactions at high intensities," Opt. Express 14, 13113-13119 (2006).
[CrossRef] [PubMed]

Weck, A.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Wellegehausen, B.

Welling, H.

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[CrossRef]

Wilkinson, D. S.

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Yoo, J. H.

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

Appl. Phys A (1)

A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, "Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses," Appl. Phys A, DOI: 10.10077s00339-007-4300-6 (2007).

Appl. Phys. A (5)

S. Nolte, G. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

C. Y. Chen and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

R. E. Russo, X. L. Mao, H. C. Liu, J. H. Yoo, and S. S. Mao, "Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation," Appl. Phys. A 69, S887-894 (1999).
[CrossRef]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, "Residual thermal effects in Al following single ns- and fs-laser pulse ablation," Appl. Phys. A 82, 357-362 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Dynamics of an air breakdown plasma on a solid surface during picosecond laser ablation," Appl. Phys. Lett. 76, 31-33 (2000).
[CrossRef]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, "Initiation of an early-stage plasma during picosecond laser ablation of solids," Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

Int. J. Thermophys. (1)

R. S. Graves, T. G. Kollie, D. L. McElroy, and K. E. Gilchrist, "The thermal conductivity of AISI304L stainless steel," Int. J. Thermophys. 12, 409-415 (1991).
[CrossRef]

J. Laser Appl. (1)

H. Ki, P. S. Mohanty, and J. Mazumder, "Multiple reflection and its influence on keyhole evolution," J. Laser Appl. 14, 39-45 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

D. Breitling, A. Ruf, and F. Dausinger, "Fundamental aspects in machining of metals with short and ultrashort laser pulses," Proc. SPIE 5339, 49-61 (2004).
[CrossRef]

Other (3)

S. Weiler, J. Stollhof, D. Eckert, J. Kleinbauer, D. H. Sutter, and M. Kumkar, "Taking advantage of disk laser technology for industrial micro processing," in Proceedings of the Fourth International WLT-Conference on Lasers in Manfacturing 2007 (Munich, 2007), pp. 593-596.

M. Kraus, S. Collmer, S. Sommer, A. Michalowski, and F. Dausinger, "Microdrilling in steel with ultrashort laser pulses at 1064 nm and 532 nm," in Proceedings of the Fourth International WLT-Conference on Lasers in Manfacturing 2007 (Munich, 2007), pp. 639-644.

D. Bäuerle, Laser Processing and Chemistry, 2nd ed, (Springer-Verlag Berlin, 1996), Chap. 7.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Average number of pulses to breakthrough 0.5 mm thick stainless steel (Fe/Cr18Ni10) sheets at various repetition rates, for 20 µJ of pulse energy and 800 fs pulse duration.

Fig. 2.
Fig. 2.

Average number of pulses to breakthrough 0.5 mm thick stainless steel (Fe/Cr18Ni10) sheets at various repetition rates for (a) 30 µJ, (b) 50 µJ and (c) 70 µJ pulse energy. In all graphs experimental data are plotted in dots, while the lines represent the estimated melting threshold due to the heat accumulation effect.

Fig. 3.
Fig. 3.

SEM pictures of the entrance of holes drilled in 0.5-mm-thick stainless steel sheets with the percussion drilling technique with an energy of 30 µJ and (a) 100 kHz and (b) 400 kHz repetition rate.

Fig. 4.
Fig. 4.

Drilling time to breakthrough 0.5-mm and 1-mm thick steel sheets at various repetition rates for 70 µJ pulse energy.

Fig. 5.
Fig. 5.

(a) Time and (b) number of pulses to drill through 0.5-mm-thick copper sheets at various repetition rates for different pulse energies.

Fig. 6.
Fig. 6.

SEM pictures of the entrance of holes drilled on 0.5-mm-thick copper sheets with the percussion technique with an energy of 50 µJ at 50 kHz (a), and 975 kHz (b) repetition rate.

Fig. 7.
Fig. 7.

SEM pictures of the entrance of holes drilled with the trepanning technique in 0.5-mm-thick (a) steel sheets with an energy of 25µJ at 500 kHz, using a trepanning radius of 75 µm and a rotation speed of 265 rounds/s and (b) copper sheets with an energy of 50 µJ, a repetition rate of 975 kHz, a trepanning radius of 75 µm and a rotation speed of 106 rounds/s. The time to breakthrough is 800 ms for steel and 75 ms for copper, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T = I a w 0 2 τ l 4 π κ t ( D t ) 1 2
NP MELT = T M Δ T
NP MELT = 4 π 3 2 κ D · T M τ l · A · E P · v 5 2

Metrics