Abstract

Endface output patterns of micro/nanofibers (MNFs) are simulated using a Three-Dimension Finite-Difference Time-Domain (3D-FDTD) method. The intensity distribution and beam widths of near- or far-field output patterns of freestanding silica and tellurite MNFs with flat, angled, spherical and tapered endfaces in air and/or water are obtained. It shows that, for a subwavelength-diameter MNF, highly confined output beam can be obtained in the near field, and the beam width can be tuned by the ratio of fiber diameter and light wavelength with a minimum width smaller than the wavelength. Meanwhile, MNFs with shaped endfaces behave differently from standard fibers in reflection, redirection and focus of light beam at the endfaces. These results may offer valuable references for practical evaluation and application of terminated MNFs with wavelength- or subwavelength-scale endfaces.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  2. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
    [CrossRef] [PubMed]
  3. L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
    [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
    [CrossRef] [PubMed]
  5. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880.
    [CrossRef] [PubMed]
  6. M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4331.
    [CrossRef] [PubMed]
  7. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
    [CrossRef] [PubMed]
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300.
    [CrossRef] [PubMed]
  9. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
    [CrossRef] [PubMed]
  10. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  11. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  12. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, " Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  13. J. Villatoro and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 135087-5092 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84574.
    [CrossRef] [PubMed]
  14. X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  15. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
    [CrossRef] [PubMed]
  16. Y. H. Li and L. M. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).
    [CrossRef] [PubMed]
  17. V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006).
    [CrossRef]
  18. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
    [CrossRef] [PubMed]
  19. A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
    [CrossRef]
  20. L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
    [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  22. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell???s Equations and the Schrödinger Equation (Wiley, 2001).
    [PubMed]
  23. D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, The Meep FDTD package, http://ab-initio.mit.edu/meep/.
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
    [CrossRef]
  25. P. Klocek, Handbook of Infrared Optical Materials, (Marcel Dekker, New York, 1991).
  26. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
    [CrossRef] [PubMed]
  27. Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).
  28. A. Méndez and T. F. Morse, Specialty optical fibers handbook (Elsevier, Amsterdam, 2007).
  29. H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
    [CrossRef] [PubMed]
  30. S. K. Mondal, S. Gangopadhyay, and S. Sarkar, "Analysis of an upside-down taper lens end from a single-mode step-index fiber," Appl. Opt. 37, 1006-1009 (2005).
    [CrossRef]
  31. Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, "Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging," Appl. Opt. 46, 5887-5894 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (4)

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, "Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging," Appl. Opt. 46, 5887-5894 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

2006 (6)

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef]

V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006).
[CrossRef]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
[CrossRef] [PubMed]

2005 (7)

2004 (3)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

1999 (1)

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Bondarenko, V.

V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006).
[CrossRef]

Bures, J.

Chang, S. D.

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Chen, Y.

Chiu, S.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Flueraru, C.

Foster, M. A.

Gaeta, A. L.

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Gangopadhyay, S.

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Ghosh, R.

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

He, J. L.

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Hu, L. L.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jiang, X. S.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Leon-Saval, S. G.

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Li, H.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Li, Y. H.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Lipson, M.

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Ma, Z.

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

Mansuripur, M.

Mao, Y.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Mao, Y. X.

Marcon, N. E.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Mariampillai, A

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Moll, K. D.

Mondal, S. K.

Monzon-Hernandez, D.

Munce, N. R.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Ning, C. Z.

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Qiu, J. R.

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Ruhle, S.

L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef]

Russell, P. St. J.

Sarkar, S.

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Shen, Y.H.

Sherif, S.

Standish, B. A.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Sumetsky, M.

Svacha, G. T.

Tong, L. M.

Y. H. Li and L. M. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).
[CrossRef] [PubMed]

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Turner, A. C.

Van, L. V.

L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef]

Vanmaekelbergh, D.

L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef]

Vienne, G.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Villatoro, J.

Vitkin, A.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, S. S.

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

Wilson, B. C.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yang, P. D.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Yang, Q.

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

Yang, V. X. D.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ye, Z. Z.

Zhang, J. J.

Zhao, Y.

V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

V. Bondarenko and Y. Zhao, " "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide," Appl. Phys. Lett. 89, 141103 (2006).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Ma, S. S. Wang, Q. Yang, and L. M. Tong, "Near-field optical imaging of evanescent waves guided by micro/nanofibers," Chin. Phys. Lett. 24, 3006-3008 (2007).

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data. (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, "Refractive index of water and steam as function of wavelength temperature and density," J. Phys. Chem. Ref. Data. 19, 677-717 (1990).
[CrossRef]

Lasers Surg. Med. (1)

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Nano Lett. (2)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. V. Van, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Lett. 6, 2707-2711 (2006).
[CrossRef]

Nature (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, "Tunable nanowire nonlinear optical probe," Nature 447, 1098-1101 (2007).
[CrossRef] [PubMed]

Nature (London) (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025.
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864.
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880.
[CrossRef] [PubMed]

M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13, 4331-4340 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4331.
[CrossRef] [PubMed]

J. Villatoro and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 135087-5092 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84574.
[CrossRef] [PubMed]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y.H. Shen, J. L. He, and Z. Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers," Opt. Express 14, 9408-9414 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9408.
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (5)

P. Klocek, Handbook of Infrared Optical Materials, (Marcel Dekker, New York, 1991).

A. Méndez and T. F. Morse, Specialty optical fibers handbook (Elsevier, Amsterdam, 2007).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell???s Equations and the Schrödinger Equation (Wiley, 2001).
[PubMed]

D. Roundy, M. Ibanescu, P. Bermel, A. Farjadpour, J. D. Joannopoulos, and S. G. Johnson, The Meep FDTD package, http://ab-initio.mit.edu/meep/.

Supplementary Material (1)

» Media 1: MOV (1834 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Mathematic model for investigation of the endface output patterns of MNFs.

Fig. 2.
Fig. 2.

Output patterns in x-y plane (z=0) of (a) a 4.2-µm-length, 400-nm-diameter silica MNF in air; (b) a 4.2-µm-length, 400-nm-diameter silica MNF in water; (c) a 4.2-µm-length, 250-nm-diameter tellurite MNF in air; and (d) a 4.2-µm-length, 250-nm-diameter tellurite MNF in water. The dashed white lines map the topography profile of the MNFs.

Fig. 3.
Fig. 3.

Normalized intensity distributions along the y-axis in x-y plane (z=0) with distances of 100 nm (x=100 nm, near-field, in solid lines) and 3000 nm (x=3000 nm, far-field, in dashed lines) departed from the end facets of the silica MNF in air (black lines), silica MNF in water (red lines), tellurite MNF in air (blue lines), and tellurite in water (green lines).

Fig. 4.
Fig. 4.

Beam widths of near-field outputs (measured 100-nm departure from the output endfaces) with respect to the normalized fiber diameter (D/λ) at the wavelength of 633 nm for silica MNFs in air (black line) or water (red line), and tellurite MNFs in air (blue line) or water (green line). Open circles denote the critical diameters for single-mode operation.

Fig. 5.
Fig. 5.

(1.83 MB) Movie of the evolvement of wavelength-dependent EOPs of a 2.8-µm-length 400-nm-diameter silica MNF in air, with the wavelength of the light source scanning from 250–800 nm.[Media 1]

Fig. 6.
Fig. 6.

Output patterns of 400-nm-diameter air-clad freestanding silica MNFs in x-y plane (z=0) at the wavelength of 633 nm with a (a) 15°, (b) 30°, (c) 45°, (d) 60°, (e) 75°, and (f) 90° (flat endface)-angled endface, respectively. The dashed white lines map the topography profile of the MNFs.

Fig. 7.
Fig. 7.

(a) Coordinate system for MNFs with angled endfaces. (b) Normalized intensity distributions along the y-axis in x-y plane (z=0) with distances of 100 nm (x=100 nm, near-field, in solid lines) and 3000 nm (x=3000 nm, far-field, in dashed lines) departed from the apex of the angled endfaces of MNFs in air.

Fig. 8.
Fig. 8.

Output patterns of MNFs in x-y plane (z=0) at the wavelength of 633 nm. The MNFs have spherical tips with sphere diameters of (a) 400 nm and (b) 800 nm, and tapered tips with tapering angles of (c) 15°, (d) 30°, (e) 60°, and (f) 120°, respectively. The dashed white lines map the topography profile of the MNFs.

Fig. 9.
Fig. 9.

(a) Coordinate system for MNFs with tapered or spherical tips. (b) Normalized intensity distributions along the y-axis in x-y plane (z=0) with distances of 100 nm (x=100 nm, near-field, in solid lines) and 3000 nm (x=3000 nm, far-field, in dashed lines) departed from the apex of tapered or spherical MNFs in air.

Fig. 10.
Fig. 10.

Output patterns in x-y plane (z=0) of 400-nm-diameter freestanding silica MNFs in water at the wavelength of 633 nm with (a) 15°, (b) 30°, (c) 75°, and (d) 90° (flat endface)-angled endface respectively. The dashed white lines map the topography profile of the MNFs.

Fig. 11.
Fig. 11.

Normalized intensity distributions along the y-axis in x-y plane (z=0) with distances of 100 nm (x=100 nm, near-field, in solid lines) and 3000 nm (x=3000 nm, far-field, in dashed lines) departed from the apex of the angled endfaces of MNFs in water.

Metrics