Abstract

In this paper, we present a novel volumetric computational reconstruction (VCR) method for improved 3D object correlator. Basically, VCR consists of magnification and superposition. This paper presents new scale-variant magnification as a technique for VCR. To introduce our technique, we discuss an interference problem among elemental images in VCR. We find that a large magnification causes interference among elemental images when they are applied to the superposition. Thus, the resolution of reconstructed images should be limited by this interference. To overcome the interference problem, we propose a method to calculate a minimum magnification factor while VCR is still valid. Magnification by a new factor enables the proposed method to reconstruct resolution-enhanced images. To confirm the feasibility of the proposed method, we apply our method to a VCR-based 3D object correlator. Experimental results indicate that our method outperforms the conventional VCR method.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging

Dong-Hak Shin, Byung-Gook Lee, and Joon-Jae Lee
Opt. Express 16(21) 16294-16304 (2008)

Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging

Dong-Hak Shin, Chun-Wei Tan, Byung-Gook Lee, Joon-Jae Lee, and Eun-Soo Kim
Appl. Opt. 47(35) 6656-6665 (2008)

Occlusion-removed scheme using depth-reversed method in computational integral imaging

Miao Zhang, Yongri Piao, and Eun-Soo Kim
Appl. Opt. 49(14) 2571-2580 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographic integrale,” C.R. Acad. Sci. 146, 446–451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
    [Crossref]
  3. J.-S. Jang and B. Javidi, “Improved viewing resolution of three- dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [Crossref]
  4. B. Lee, S. Y. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481–1482 (2001).
    [Crossref]
  5. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
    [Crossref]
  6. D. -H. Shin, B. Lee, and E. -S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
    [Crossref] [PubMed]
  7. S. -H. Hong, J. -S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-483.
    [Crossref] [PubMed]
  8. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
    [Crossref]
  9. S. -H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4579.
    [Crossref] [PubMed]
  10. H. Yoo and D. -H. Shin, “Improved analysis on the signal property of computational integral imaging system,” Opt. Express 15, 14107–14114 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-14107.
    [Crossref] [PubMed]
  11. D. -H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039–12049 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-12039.
    [Crossref] [PubMed]
  12. B. Javidi, R. Ponce-Díaz, and S. -H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106–1108 (2006).
    [Crossref] [PubMed]
  13. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
    [Crossref]
  14. Y. Frauel and B. Javidi, “Digital Three-Dimensional Image Correlation by Use of Computer-Reconstructed Integral Imaging,” Appl. Opt. 41, 5488–5496 (2002).
    [Crossref] [PubMed]
  15. J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13, 5116–5126 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-5116.
    [Crossref] [PubMed]

2007 (3)

2006 (2)

2005 (3)

2004 (2)

2002 (2)

2001 (1)

1999 (1)

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

1908 (1)

G. Lippmann, “La photographic integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

Frauel, Y.

Hong, S. -H.

Hoshino, H.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
[Crossref]

Jang, J. -S.

Jang, J.-S.

Javidi, B.

Jung, S. Y.

Kim, E. -S.

Kim, E.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
[Crossref]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[Crossref]

Kim, J.

Lee, B.

Lippmann, G.

G. Lippmann, “La photographic integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

Martínez-Corral, M.

Martínez-Cuenca, R.

Min, S.-W.

Okano, F.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

Park, J.-H.

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
[Crossref]

Ponce-Díaz, R.

Saavedra, G.

Shin, D. -H.

Shin, D.-H.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
[Crossref]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[Crossref]

Yoo, H.

Yuyama, I.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

Appl. Opt. (2)

C.R. Acad. Sci. (1)

G. Lippmann, “La photographic integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[Crossref]

Opt. Commun. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 26, 72–79 (2007).
[Crossref]

Opt. Eng. (1)

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Conventional VCR method for an elemental image (b) Proposed VCR for an elemental image (c) Superposition of conventional VCR method for four 1D elemental images (d) Superposition of proposed VCR method for four 1D elemental images.

Fig. 2.
Fig. 2.

(a) Pickup (b) Pixel-to-pixel mapping (c) Conventional VCR method (d) Proposed VCR method.

Fig. 3.
Fig. 3.

(a) Ray formation of proposed VCR method. (b) Comparison of M(z) and Md (z).

Fig. 4.
Fig. 4.

Minimization process for calculating Md (z)=αmin according to the distance z.

Fig. 5.
Fig. 5.

(a) Experimental setup. (b) Three test images.

Fig. 6.
Fig. 6.

Average MSE results for three test images.

Fig. 7.
Fig. 7.

Comparison of reconstructed images (a) Conventional method (b) Proposed method.

Fig. 8.
Fig. 8.

(a) Experimental setups for optically recorded elemental images. (b) Elemental images (c) Correlation results between template and plane image.

Fig. 9.
Fig. 9.

Average curves of Cpeak (z) according to the distance for three test images when the test images are located at z=30 mm.

Fig. 10.
Fig. 10.

(a) Examples of plane images from the conventional method (b) Examples of plane images from the proposed method.

Fig. 11.
Fig. 11.

Correlation results according to the distance when the tree object is located at z=45 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H n k ( z ) = kp z g nd ,
Δ H = H n 2 k 2 ( z ) H n 1 k 1 ( z ) = p ( k 2 k 1 ) z g ( n 2 n 1 ) d ·
α = Δ H d = N ( k 2 k 1 ) M ( n 2 n 1 ) ,
MSE ( O , R z ) = 1 u v x = 1 u y = 1 v [ O ( x , y ) R z ( x , y ) ] 2
C ( x c , y c ) = 1 u v x = 1 u y = 1 v [ R z * ( x , y ) O ( x c + x , y c + y ) ]

Metrics