Abstract

This paper discusses the importance of stress-induced contributions to the photo-induced birefringence observed in fiber Bragg gratings. Optical tomography measurements are performed in exposed and unexposed fibers to extract the stress profiles induced by UV-writing of fiber Bragg gratings for various exposure levels. A photoelastic analysis and a high-order isoparametric finite elements method are then used to calculate the birefringence caused by stress profile modifications. The results are compared to the birefringence directly measured by spectral analysis of a chirped fiber grating with multiple phase-shifts. We can therefore estimate the fraction of the photo-induced birefringence due to stress-induced anisotropy following UV exposure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994).
    [CrossRef]
  2. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
    [CrossRef] [PubMed]
  3. D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
    [CrossRef]
  4. H. Renner, "Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers," Opt. Express 9, 546-560 (2001).
    [CrossRef] [PubMed]
  5. N. Belhadj, K. Dossou, X. Daxhelet, S. LaRochelle, S. Lacroix, and M. Fontaine, "A comparative study of numerical methods for the calculation of the birefringence of UV-illuminated fibers," OSA Technical Digest: Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, Monterey, California, USA, September 1-3, (paper MD20) 112-114 (2003).
  6. N. Belhadj, S. LaRochelle, and K. Dossou, "Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method," Opt. Express 12, 1720-1726 (2004).
    [CrossRef] [PubMed]
  7. N. Belhadj, S. LaRochelle, and K. Dossou, "Analysis of birefringence and eigen-axes orientation resulting from the interplay between initial and form birefringence in UV-illuminated fibre," IEEE-LEOS Annual Meeting 2006, Montreal, Canada, October 29- November 2, Paper TuX 2, (2006).
  8. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
    [CrossRef]
  9. J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
    [CrossRef]
  10. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
    [CrossRef]
  11. P. St.-J. Russell, P. and D. P. Hand, "Rocking filter formation in photosensitive high birefringence optical fibres," Electron. Lett. 26, 1846-1848, (1990).
    [CrossRef]
  12. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, "Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings," Opt. Lett. 20, 1346-1348 (1995).
    [CrossRef] [PubMed]
  13. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
    [CrossRef]
  14. H. G. Limberger, C. Ban, R. P. Salathé, S. A Slattery, and D. N. Nokogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Express 15, 5610-5615 (2007).
    [CrossRef] [PubMed]
  15. H. Renner, "Impact of UV-induced mode-field deformation on residual stress birefringence in single mode fibers," Opt. Commun. 244, 131-135 (2005).
    [CrossRef]
  16. K. Dossou and M. Fontaine, "A high order isoparametric finite element method for the computation of wave guide modes," Comput. Methods Appl. Mech. Eng. 194, 837-858 (2005).
    [CrossRef]
  17. Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
    [CrossRef]
  18. Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
    [CrossRef]
  19. L. Dong, G. Qi, M. Marro, V. Bhatia, L. L. Hepburn, M. Swan, A. Collier, and D. L. Weidman, "Suppression of Cladding Mode Coupling Loss in Fiber Bragg Gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
    [CrossRef]
  20. A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992).
    [CrossRef]
  21. J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982).
    [CrossRef]
  22. G. Brochu and S. LaRochelle, "Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan," Proc. SPIE 6796, 1-11 (2007).
  23. Y. Park, U.-C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarizationmaintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).
    [CrossRef]
  24. Y. Park, U.-C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a singlemode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).
    [CrossRef]
  25. T. Abe, Y. Mitsunaga, and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers," J. Opt. Soc. Am. A 3, 133 (1986).
    [CrossRef]
  26. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3.
  27. Y. Park, U.-C. Paek and D. Y. Kim, "Characterization of a Stress-Applied Polarization-Maintaining (PM) Fiber Through Photoelastic Tomography," J. Lightwave Technol.  21, 997- (2003).
    [CrossRef]
  28. U.-C. Paek and C. R. Kurkjian, "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers," J. Am. Ceram. Soc. 58, 330-335 (1975).
    [CrossRef]
  29. S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York, McGraw-Hill, 1970).
  30. H. Aben and C. Guillemet, Photoelasticity of Glass, (Berlin, Germany, Springer-Verlag, 1993).

2007 (2)

H. G. Limberger, C. Ban, R. P. Salathé, S. A Slattery, and D. N. Nokogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Express 15, 5610-5615 (2007).
[CrossRef] [PubMed]

G. Brochu and S. LaRochelle, "Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan," Proc. SPIE 6796, 1-11 (2007).

2005 (3)

H. Renner, "Impact of UV-induced mode-field deformation on residual stress birefringence in single mode fibers," Opt. Commun. 244, 131-135 (2005).
[CrossRef]

K. Dossou and M. Fontaine, "A high order isoparametric finite element method for the computation of wave guide modes," Comput. Methods Appl. Mech. Eng. 194, 837-858 (2005).
[CrossRef]

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

2004 (2)

N. Belhadj, S. LaRochelle, and K. Dossou, "Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method," Opt. Express 12, 1720-1726 (2004).
[CrossRef] [PubMed]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

2003 (1)

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

2002 (4)

2001 (1)

2000 (1)

1997 (1)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

1995 (1)

1994 (3)

1992 (1)

A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992).
[CrossRef]

1990 (1)

P. St.-J. Russell, P. and D. P. Hand, "Rocking filter formation in photosensitive high birefringence optical fibres," Electron. Lett. 26, 1846-1848, (1990).
[CrossRef]

1982 (1)

J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982).
[CrossRef]

1975 (1)

U.-C. Paek and C. R. Kurkjian, "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers," J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

Ahn, T. -J

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Ban, C.

Bayon, J. F.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Belhadj, N.

Bernage, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Bhatia, V.

Brochu, G.

G. Brochu and S. LaRochelle, "Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan," Proc. SPIE 6796, 1-11 (2007).

Canning, J.

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

Choi, S.

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Cochet, F.

Collier, A.

Cordier, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Deyerl, H. J.

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

Dong, L.

L. Dong, G. Qi, M. Marro, V. Bhatia, L. L. Hepburn, M. Swan, A. Collier, and D. L. Weidman, "Suppression of Cladding Mode Coupling Loss in Fiber Bragg Gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Dossou, K.

Douay, M.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Dürr, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

Erdogan, T.

Fertein, E.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

Fonjallaz, P. Y.

Fontaine, M.

K. Dossou and M. Fontaine, "A high order isoparametric finite element method for the computation of wave guide modes," Comput. Methods Appl. Mech. Eng. 194, 837-858 (2005).
[CrossRef]

K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
[CrossRef]

Han, W. T.

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Hepburn, L. L.

Hindle, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

Inniss, D.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

Kell, K. -J. E.

A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992).
[CrossRef]

Kim, D. Y.

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarizationmaintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a singlemode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).
[CrossRef]

Kim, Y. H.

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Kimura, T.

J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982).
[CrossRef]

Kosinski, S. G.

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

Kristensen, M.

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

Kurkjian, C. R.

U.-C. Paek and C. R. Kurkjian, "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers," J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

LaRochelle, S.

Lemaire, P. J.

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

Leuenberger, B.

Limberger, H. G.

Marro, M.

Mizrahi, V.

Niay, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Nokogosyan, D. N.

Oh, K.

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Paek, U. -C.

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Paek, U.-C.

Park, Y.

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a singlemode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).
[CrossRef]

Y. Park, U.-C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarizationmaintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).
[CrossRef]

Peak, U. -C.

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Poignant, H.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Poumellec, B.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Przygodzki, C.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

Puro, A. E.

A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992).
[CrossRef]

Qi, G.

Reed, W. A.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

Renner, H.

H. Renner, "Impact of UV-induced mode-field deformation on residual stress birefringence in single mode fibers," Opt. Commun. 244, 131-135 (2005).
[CrossRef]

H. Renner, "Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers," Opt. Express 9, 546-560 (2001).
[CrossRef] [PubMed]

Russell, P. St.-J.

P. St.-J. Russell, P. and D. P. Hand, "Rocking filter formation in photosensitive high birefringence optical fibres," Electron. Lett. 26, 1846-1848, (1990).
[CrossRef]

Sakai, J.

J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982).
[CrossRef]

Salathe, R. P.

Salathé, R. P.

H. G. Limberger, C. Ban, R. P. Salathé, S. A Slattery, and D. N. Nokogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber," Opt. Express 15, 5610-5615 (2007).
[CrossRef] [PubMed]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

Slattery, S. A

Sorensen, H. R.

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

Swan, M.

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Vengsarkar, A. M.

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

Weidman, D. L.

Xie, W. X.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Zhong, Q.

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, "Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method," Opt. Lett. 19, 1260-1262 (1994).
[CrossRef] [PubMed]

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

App. Opt. (2)

Y. Park, T. -J Ahn, Y. H. Kim, W. T. Han, U. -C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," App. Opt. 41, 21-26 (2002).
[CrossRef]

Y. Park, S. Choi, U. -C. Peak, K. Oh, and D. Y. Kim, "Measurement method for profiling the residual stress of an optical fiber: detailed analysis of off-focusing and beam-deflection effects," App. Opt. 42, 1182-1190 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, "Tomographic measurement of femtosecond-laser induced stress changes in optical fibers," Appl. Phys. Lett. 84, 4983-4985, (2004).
[CrossRef]

D. Inniss, Q. Zhong, A. M. Vengsarkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, "Atomic force microscopy study of UV-induced anisotropy in hydrogen-loaded germanosilicate fibers," Appl. Phys. Lett. 65, 1528-1530, (1994).
[CrossRef]

Comput. Methods Appl. Mech. Eng. (1)

K. Dossou and M. Fontaine, "A high order isoparametric finite element method for the computation of wave guide modes," Comput. Methods Appl. Mech. Eng. 194, 837-858 (2005).
[CrossRef]

Electron. Lett. (1)

P. St.-J. Russell, P. and D. P. Hand, "Rocking filter formation in photosensitive high birefringence optical fibres," Electron. Lett. 26, 1846-1848, (1990).
[CrossRef]

J. Am. Ceram. Soc. (1)

U.-C. Paek and C. R. Kurkjian, "Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers," J. Am. Ceram. Soc. 58, 330-335 (1975).
[CrossRef]

J. Appl. Phys. (1)

J. Canning, H. J. Deyerl, H. R. Sorensen, and M. Kristensen, "Ultraviolet-induced birefringence in hydrogenloaded optical fiber," J. Appl. Phys. 97, 53104, (2005).
[CrossRef]

J. Lightwave Technol. (4)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

L. Dong, G. Qi, M. Marro, V. Bhatia, L. L. Hepburn, M. Swan, A. Collier, and D. L. Weidman, "Suppression of Cladding Mode Coupling Loss in Fiber Bragg Gratings," J. Lightwave Technol. 18, 1583-1590 (2000).
[CrossRef]

A. E. Puro and K.-J. E. Kell, "Complete determination of stress in fiber preforms of arbitrary cross section," J. Lightwave Technol. 10, 1010-1014 (1992).
[CrossRef]

K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

J. Sakai and T. Kimura, "Birefringence caused by thermal stress in elliptically deformed core optical fibers," IEEE J. Quantum Electron. 18, 1899-1909 (1982).
[CrossRef]

Opt. Commun. (1)

H. Renner, "Impact of UV-induced mode-field deformation on residual stress birefringence in single mode fibers," Opt. Commun. 244, 131-135 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

G. Brochu and S. LaRochelle, "Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan," Proc. SPIE 6796, 1-11 (2007).

Other (7)

N. Belhadj, K. Dossou, X. Daxhelet, S. LaRochelle, S. Lacroix, and M. Fontaine, "A comparative study of numerical methods for the calculation of the birefringence of UV-illuminated fibers," OSA Technical Digest: Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, Monterey, California, USA, September 1-3, (paper MD20) 112-114 (2003).

N. Belhadj, S. LaRochelle, and K. Dossou, "Analysis of birefringence and eigen-axes orientation resulting from the interplay between initial and form birefringence in UV-illuminated fibre," IEEE-LEOS Annual Meeting 2006, Montreal, Canada, October 29- November 2, Paper TuX 2, (2006).

T. Abe, Y. Mitsunaga, and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers," J. Opt. Soc. Am. A 3, 133 (1986).
[CrossRef]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001), Chap. 3.

Y. Park, U.-C. Paek and D. Y. Kim, "Characterization of a Stress-Applied Polarization-Maintaining (PM) Fiber Through Photoelastic Tomography," J. Lightwave Technol.  21, 997- (2003).
[CrossRef]

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (New York, McGraw-Hill, 1970).

H. Aben and C. Guillemet, Photoelasticity of Glass, (Berlin, Germany, Springer-Verlag, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The UV-beam scanning speed profile.

Fig. 2.
Fig. 2.

The measured reflectivity, R, and transmission, T, spectra (a) and the modulus of the transmission Jones matrix eigen-values, ρ 1 and ρ 2, as a function of wavelength (b).

Fig. 3.
Fig. 3.

2-D color graph of the phase retardation profile (ϕ) measured along 4 mm in a pristine fiber (a). Transversal cut of the phase retardation profile (b).

Fig. 4.
Fig. 4.

3-D (a) and 2-D (b)representations of the axial stress in the pristine fiber cross-section.

Fig. 5.
Fig. 5.

Phase retardation profile measured along the grating and plotted in a 3-D (a) and 2-D (b) color graphs.

Fig. 6.
Fig. 6.

Tomographic images of the axial-stress corresponding to the eight exposure levels.

Fig. 7.
Fig. 7.

Profiles of the non-zero elements of the stress tensor in the CMSF cross-section in a pristine fiber sample (a) and a UV-exposed fiber (grating, section viii) (b).

Fig. 8.
Fig. 8.

The dielectric perturbation tensor elements of the unexposed CMSF (a) and of the region with the highest UV exposure level (section viii) in the fiber grating (b).

Fig. 9.
Fig. 9.

The mesh to discretized the transverse fiber section

Fig. 10.
Fig. 10.

Comparison between total birefringence, Δneff , and anisotropy-induced birefringence for different core ellipticity cases.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = Δ λ 2 Λ m
{ 2 F r 2 + 1 r dF dr + 1 r 2 2 F θ 2 = zz χ F ( r , θ ) r = r cl = 0 , dF dr r = r cl = 0
σ rr = 1 r dF dr + 1 r 2 2 F θ 2
σ θθ = 2 F r 2
σ r θ = 1 r 2 dF 1 r 2 F r θ
[ ε ] = [ ε i ] + [ δ ε ]
[ σ ~ 2 ( σ rr + σ θθ ) σ + ( σ rr σ θθ σ r θ 2 ) ] ( σ ~ σ zz ) = 0
σ ~ rr = σ rr δ σ
σ ~ θθ = σ θθ + δ σ
σ ~ zz = σ zz
n ~ rr = n 0 + C 1 σ ~ rr + C 2 ( σ ~ θθ + σ ~ zz )
n ~ θθ = n 0 + C 1 σ ~ θθ + C 2 ( σ ~ rr + σ ~ zz )
n ~ zz = n 0 + C 1 σ ~ zz + C 2 ( σ ~ rr + σ ~ θθ )

Metrics