Abstract

We demonstrate the ability to directly generate broadband THz surface plasmons via optical rectification on a cylindrical metal wire. This is accomplished by milling a single circumferential groove into the wire and overcoating it with a poled polymer that exhibits a bulk second order susceptibility. An attractive feature of this approach is the potential to generate THz pulses that are limited in duration only by the duration of the optical pump pulse. While a photoconductive detector is used in the present demonstration, we discuss further refinements to the system that should allow for significant enhancement of the nonlinear optical conversion efficiency and detection bandwidth.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  2. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  3. S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  4. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
    [CrossRef] [PubMed]
  5. J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
    [CrossRef]
  6. A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952), 177-190.
  7. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
    [CrossRef]
  8. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005).
    [CrossRef] [PubMed]
  9. A. Agrawal and A. Nahata, "Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture," Opt. Express 15, 9022-9028 (2007).
    [CrossRef] [PubMed]
  10. G. Chang, C. J. Divin, C. -H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007).
    [CrossRef] [PubMed]
  11. A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
    [CrossRef]
  12. A. M. Sinyukov and L. M. Hayden, "Generation and detection of terahertz radiation with multilayered electro-optic polymer films," Opt. Lett. 27, 55-57 (2002)
    [CrossRef]
  13. A. Nahata, "Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines," Opt. Lett. 26, 385-387 (2001).
    [CrossRef]
  14. H. Cao, R.A. Linke, and A. Nahata, "Broadband generation of broadband terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
    [CrossRef] [PubMed]
  15. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
    [CrossRef]
  16. E. M. McKenna, A. S. Lin, A. R. Mickelson, R. Dinu, and D. Jin, "Comparison of r33 values for AJ404 films prepared with parallel plate and corona poling," J. Opt. Soc. Am. B 24, 2888-2892 (2007)
    [CrossRef]
  17. A. Nahata, R.A. Linke, T. Ishi, and K. Ohashi, "Enhanced nonlinear optical conversion using periodically nanostructured metal films," Opt. Lett. 28, 423-425 (2003).
    [CrossRef] [PubMed]
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef] [PubMed]
  19. A. Nahata, C. Wu, and J.T. Yardley, "Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red #1 copolymer," J. Opt. Soc. Am. B 10, 1553-1564 (1993).
    [CrossRef]
  20. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
    [CrossRef]
  21. K.D. Singer, M.G. Kuzyk, and J.E. Sohn, "Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties," J. Opt. Soc. Am. B 4, 968 (1987).
    [CrossRef]
  22. A. Nahata, A.S. Weling, and T.F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Vol. 111 of Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1988).

2007 (4)

2006 (3)

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai and C.-Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
[CrossRef] [PubMed]

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

1996 (1)

A. Nahata, A.S. Weling, and T.F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

1995 (1)

A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
[CrossRef]

1993 (1)

1989 (1)

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

1987 (1)

1983 (1)

Agrawal, A.

Alexander, R. W.

Andrews, S.R.

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Auston, D.H.

A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berndsen, N.

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

Bjorklund, G. C.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Cao, H.

Chai, L.

Chang, G.

Chen, Y.

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Deibel, J.A.

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

Dinu, R.

Divin, C. J.

Eich, M.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Escarra, M.

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

Galvanauskas, A.

Garcia-Vidal, F.J.

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

Hayden, L. M.

Heinz, T.F.

A. Nahata, A.S. Weling, and T.F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Hu, M.

Ishi, T.

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

Jin, D.

Kuzyk, M.G.

Li, Y.

Lin, A. S.

Linke, R.A.

Liu, C. -H.

Long, L. L.

Looser, H.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Maier, S.A.

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

McKenna, E. M.

Mickelson, A. R.

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Mittleman, D.M.

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

Nahata, A.

Norris, T. B.

Ohashi, K.

Ordal, M. A.

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Sen, A.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Singer, K.D.

Sinyukov, A. M.

Sohn, J.E.

Song, Z.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Swalen, J. D.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Tweig, R.

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Wang, C.-Y.

Wang, K.

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Ward, C. A.

Weling, A.S.

A. Nahata, A.S. Weling, and T.F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Williamson, S. L.

Wu, C.

A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
[CrossRef]

A. Nahata, C. Wu, and J.T. Yardley, "Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red #1 copolymer," J. Opt. Soc. Am. B 10, 1553-1564 (1993).
[CrossRef]

Xing, Q.

Yardley, J.T.

A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
[CrossRef]

A. Nahata, C. Wu, and J.T. Yardley, "Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red #1 copolymer," J. Opt. Soc. Am. B 10, 1553-1564 (1993).
[CrossRef]

Yoon, D. Y

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Nahata, A.S. Weling, and T.F. Heinz, "A wide band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

A. Nahata, D.H. Auston, C. Wu, and J.T. Yardley, "Generation of terahertz radiation from a poled polymer," Appl. Phys. Lett. 67, 1358-1360 (1995).
[CrossRef]

J. Appl. Phys. (1)

M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Tweig, and D. Y Yoon, "Corona poling and real time second harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer," J. Appl. Phys. 66, 2559-2567 (1989).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S.A. Maier, S.R. Andrews, L. Martin-Moreno, and F.J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on metal wires," Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

J.A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D.M. Mittleman, "Finite element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95, 1624-1640 (2007).
[CrossRef]

Science (2)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Other (3)

A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952), 177-190.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Vol. 111 of Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic drawing of the fabrication process. (top) A 1 mm diameter glass fiber is uniformly coated with 5 nm of Cr and then 300 nm of Ag, (middle) a 375 nm wide, 100 nm deep groove is circumferentially milled into the metal, (bottom) the region surrounding the groove is overcoated with a nonlinear optical polymer. (b) Corona poling setup designed to pole the polymer radially. See text for details.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. The optical pump beam was focused onto a single groove milled into the wire. The groove and surrounding region were overcoated with a poled polymer, allowing for generation of broadband THz pulses. The distance between the groove and the photoconductive detector was ~5 cm.

Fig. 3.
Fig. 3.

(a) Experimentally observed time-domain waveforms (top waveform) with the optical pump beam centered on the groove and with the encapsulating polymer poled so that it exhibits a macroscopic second order nonlinear susceptibility, (middle waveform) with the optical pump beam laterally shifted away from the groove but still incident on the encapsulating polymer poled so that it exhibits a macroscopic second order nonlinear susceptibility, and (bottom waveform) with the optical pump beam centered on the groove and with the encapsulating polymer depoled so that it does not exhibit a macroscopic second order nonlinear susceptibility. (b) Amplitude spectrum of the top waveform from (a).

Fig. 4.
Fig. 4.

Measured time-domain THz waveforms for THz pulses generated directly on the wire. The upper trace shows the waveform measured with the photoconductive detector located 3 mm to the right of the wire center, while the lower trace corresponds to the observed waveform taken with the detector placed 3 mm to the left of the wire center. The inversion of the observed waveform with the change in the detector position demonstrates clearly the radial polarization of the wave.

Metrics