Abstract

An alternative optical coherence tomography (OCT) to clinical ophthalmic 830 nm spectral-domain OCTs (SD-OCT) is demonstrated. An axial resolution of 7.4 µm, ranging depth of 4.2 mm in tissue, sensitivity of 98.5 dB, and detection speed of 38,300 axial scans/s have been achieved. These are comparable or superior to those of recently commercially available ophthalmic 830 nm SD-OCTs in clinics. In addition, fast volumetric imaging for the in vivo human posterior eye with high-contrast of the choroid is achieved. A broadband 1.04 µm light source enables the high-contrast and high resolution imaging of the retina and choroid. The ranging depth is extended by applying a full-range imaging method with an electro-optic modulator (BM-scan method). A prototype high-speed InGaAs line scan camera with 1024 pixels is used. A newly reported sensitivity improvement property of the BM-scan method demonstrates a sensitivity enhancement of 5.1 dB. We also introduce a newly developed resampling calibration method of spectrum that is independent of the intrinsic dispersion mismatch of the interferometer. The three-dimensional structure of the in vivo human optic nerve head with a very deep cupping is successfully visualized.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  3. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133- 6137 (1999).
    [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?id=71990.
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?id=78787.
    [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  8. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
    [CrossRef] [PubMed]
  9. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
    [CrossRef]
  10. M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
    [CrossRef] [PubMed]
  11. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
    [CrossRef] [PubMed]
  12. A. Unterhuber, B. Pova?zay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3252.
    [CrossRef] [PubMed]
  13. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?id=89920.
    [CrossRef] [PubMed]
  14. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
    [CrossRef] [PubMed]
  15. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second." Opt. Lett. 32, 2049-2051 (2007).
    [CrossRef] [PubMed]
  16. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
    [CrossRef] [PubMed]
  17. G. Hale and M. Querry, "Optical constants of water in the 200-nm to 200-??m wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  18. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411.
    [CrossRef] [PubMed]
  19. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  20. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006), http://www.opticsexpress.org/abstract.cfm?id=88060.
    [CrossRef] [PubMed]
  21. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980.
    [CrossRef] [PubMed]
  22. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3?3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003).
    [CrossRef] [PubMed]
  23. B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
    [CrossRef] [PubMed]
  24. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
    [CrossRef] [PubMed]
  25. A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
    [CrossRef] [PubMed]
  26. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006).
    [CrossRef] [PubMed]
  27. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054,103 (2007).
  28. B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
    [CrossRef]
  29. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
    [CrossRef] [PubMed]
  30. L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).
    [CrossRef] [PubMed]
  31. S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-734 (2008).
    [CrossRef] [PubMed]
  32. American National Standard Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  33. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
    [CrossRef]
  34. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ??m wavelength," Opt. Express 11, 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?id=78225.
    [CrossRef] [PubMed]
  35. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008) http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6008,
    [CrossRef] [PubMed]
  36. E. J. McDowell, X. Cui, Z. Yaqoob, and C. Yang, "A generalized noise variance analysis model and its application to the characterization of 1/f noise," Opt. Express 15, 3833-3848 (2007) http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3833,
    [CrossRef] [PubMed]
  37. J. Greivenkamp and J. Bruning, "Phase shifting interferometries," in Optical shop testing, D. Malacara, ed.,Wiley Series in Pure and Applied Optics, 2nd ed., chap. 14, pp. 501-598 (John Wiley & Sons Inc., 1992).

2008 (2)

2007 (9)

E. J. McDowell, X. Cui, Z. Yaqoob, and C. Yang, "A generalized noise variance analysis model and its application to the characterization of 1/f noise," Opt. Express 15, 3833-3848 (2007) http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3833,
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second." Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054,103 (2007).

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

2006 (6)

2005 (2)

A. Unterhuber, B. Pova?zay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3252.
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

2004 (2)

2003 (7)

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?id=71990.
[CrossRef] [PubMed]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3?3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ??m wavelength," Opt. Express 11, 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?id=78787.
[CrossRef] [PubMed]

2002 (1)

1999 (1)

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133- 6137 (1999).
[CrossRef]

1998 (1)

G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1995 (2)

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1973 (1)

Adler, D. C.

Ahnelt, P.

Akiba, M.

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

An, L.

Aoki, G.

Bachmann, A.

Bajraszewski, T.

Baumann, B.

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

Bizheva, K.

Blinder, S.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Cense, B.

Chan, K.-P.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Chavez-Pirson, A.

Chen, T. C.

Chen, Z.

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Choma, M.

Choma, M. A.

Chong, C.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Chuck, R.

Cui, X.

de Boer, J.

de Boer, J. F.

Drexler, W.

Dufour, M. L.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Endo, T.

Falkner-Radler, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Fercher, A.

Fujimoto, J. G.

G¨otzinger, E.

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Glittenberg, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Gotoh, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

H¨ausler, G.

G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hale, G.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Hangai, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Hermann, B.

Hitzenberger, C.

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?id=71990.
[CrossRef] [PubMed]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hitzenberger, C. K.

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

Hofer, B.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Hong, Y.

Huber, R.

Inoue, R.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Itoh, M.

Izatt, J.

Izatt, J. A.

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kane, D.

Kita, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Knight, J.

Kowalczyk, A.

Lamouche, G.

Lasser, T.

Lee, E. C.

Leitgeb, R.

Leitgeb, R. A.

Lim, H.

Lindner, M. W.

G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

M¨uller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Madjarova, V. D.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Makita, S.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980.
[CrossRef] [PubMed]

McDowell, E. J.

Mei, M.

Michaely, R.

Mitsui, T.

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133- 6137 (1999).
[CrossRef]

Miura, M.

Morgan, J. E.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Morosawa, A.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Mujat, M.

Nassif, N.

Nelson, J.

Ojima, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Park, B.

Park, B. H.

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Peterson, K.

Pierce, M. C.

Pircher, M.

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

Pova?zay, B.

Povazay, B.

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Querry, M.

Reiser, B.

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Russell, P. S. J.

Sakai, T.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Sarunic, M.

Sattmann, H.

Schubert, C.

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Sekhar, S. C.

Srinivasan, V. J.

Sumimura, H.

Szkulmowska, A.

Szkulmowski, M.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Unterhuber, A.

Vakhtin, A.

Vakoc, B.

Vergnole, S.

Wadsworth, W.

Wang, R. K.

Wang, Y.

Werner, J. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Windeler, R.

Wojtkowski, M.

Yamanari, M.

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Yang, C.

Yaqoob, Z.

Yasuno, Y.

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980.
[CrossRef] [PubMed]

Yatagai, T.

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980.
[CrossRef] [PubMed]

Yoshimura, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Yun, S.

Yun, S. H.

Zawadzki, R. J.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Zeiler, F.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

Zhao, M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054,103 (2007).

J. Biomed. Opt. (1)

G. Hausler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"-New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133- 6137 (1999).
[CrossRef]

Ophthalmology (2)

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical Application of Rapid Serial Fourier-Domain Optical Coherence Tomography for Macular Imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (14)

A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006), http://www.opticsexpress.org/abstract.cfm?id=88060.
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsexpress.org/abstract.cfm?id=81980.
[CrossRef] [PubMed]

A. Unterhuber, B. Pova?zay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3252.
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008) http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6008,
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsexpress.org/abstract.cfm?id=89920.
[CrossRef] [PubMed]

E. J. McDowell, X. Cui, Z. Yaqoob, and C. Yang, "A generalized noise variance analysis model and its application to the characterization of 1/f noise," Opt. Express 15, 3833-3848 (2007) http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3833,
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007), http://www.opticsexpress.org/abstract.cfm?id=134551.
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13,375-13, 387 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375.
[CrossRef]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10,652-10,664 (2005), http://www.opticsexpress.org/abstract.cfm?id=86669.
[CrossRef]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ??m wavelength," Opt. Express 11, 3598-3604 (2003) http://www.opticsexpress.org/abstract.cfm?id=78225.
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsexpress.org/abstract.cfm?id=78787.
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org/abstract.cfm?id=71990.
[CrossRef] [PubMed]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1411.
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
[CrossRef] [PubMed]

Opt. Lett. (11)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3?3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second." Opt. Lett. 32, 2049-2051 (2007).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
[CrossRef] [PubMed]

S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-734 (2008).
[CrossRef] [PubMed]

A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. M¨uller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation." Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Other (3)

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (pages 7) (2007).
[CrossRef] [PubMed]

J. Greivenkamp and J. Bruning, "Phase shifting interferometries," in Optical shop testing, D. Malacara, ed.,Wiley Series in Pure and Applied Optics, 2nd ed., chap. 14, pp. 501-598 (John Wiley & Sons Inc., 1992).

American National Standard Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).

Supplementary Material (2)

» Media 1: MOV (2788 KB)     
» Media 2: MOV (2337 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

The schematic diagram of the optical setup. VND: variable neutral density filter; ND: neutral density filter; and P: polarizer.

Fig. 2.
Fig. 2.

Waveforms for driving and synchronizing the system. Ch.0: the TTL from the camera at the start of the integration and Ch.1: the waveform for phase modulation applied to the EOM.

Fig. 3.
Fig. 3.

The Fourier transform result of the raw spectrum (A); the axial profile with the previous method with a single calibration spectrum. The blue asterisk indicates the point spread function created from the spectrum which was utilized by the calibration. (B); the axial profile with the new method with two calibration spectra (C); and the axial profile obtained with the new resampling method and numerical dispersion compensation (D).

Fig. 4.
Fig. 4.

The procedure to obtain the complex spectrum. The 2D spectral fringe (A) is Fourier transformed along the temporal axis t. The complex spectrum (C) is obtained by inverse Fourier transform the frequency spectrum (B) multiplied with the filter W(f). After the spectrum resampling, dispersion compensation, and Fourier transform along to the wavenumber axis k, the OCT image (D) is constructed.

Fig. 5.
Fig. 5.

The axial profile of OCT signals of the reflector in the sample arm at different delays with (A) conventional SD-OCT processing and (B) full-range imaging. The complex conjugate signals are broadened due to the large dispersion mismatch.

Fig. 6.
Fig. 6.

The depth dependent sensitivity measured with a reflector. The measured sensitivity (circle, solid line); the measured sensitivity with full-range imaging (square, broken line); and fitted curves of theoretical signal decay (red and green lines).

Fig. 7.
Fig. 7.

The complex conjugate rejection ratio is determined by (A) comparing the signal intensities with the dispersion compensation (blue) and opposite dispersion compensation (red). (B) The rejection ratio as a function of depth.

Fig. 8.
Fig. 8.

The cross section of the macula lutea in vivo human eye. Several layers of the retina including the external limiting membrane are visualized with a high axial resolution. NFL: the nerve fiber layer, GCL: ganglion cell layer, INL: inner nuclear layer, IPL: inner plexiform layer, ONL: outer nuclear layer, OPL: outer plexiform layer, ELM: external limiting membrane, IS/OS: inner/outer segment junction, RPE: retinal pigment epithelium, CC: choriocapillaris. The orange dashed line denotes the zero-delay.

Fig. 9.
Fig. 9.

The volumetric imaging result of the ONH. The red line in (A) the projection image denotes the scanning position of (B) (2.8 MB) the full-range cross-sectional image and (C) the cross section with conventional SD-OCT processing. The imaging size is 3×3 mm (1024×128 lines) in the lateral directions and 2.4 mm along the axial direction in tissue. [Media 1]

Fig. 10.
Fig. 10.

Blood flow artifacts due to high flow speed (red arrows). Corresponding blood vessels are shown with low intensity (yellow arrows).

Fig. 11.
Fig. 11.

(2.3 MB) The volume rendering image of the ONH. [Media 2]

Fig. 12.
Fig. 12.

The en face projection (A) and cross section (B) of the ONH. The laminar pores are clearly visualized (red arrows). The imaging size is 3×3 mm (1024×128 lines) in the lateral directions and 1.6 mm along the axial direction in tissue.

Fig. 13.
Fig. 13.

The schematics of the power spectra of the OCT signal (green curve) and the window function (blue curve) in the temporal frequency domain. fA : the line rate of the camera, fL : lower cutoff frequency of the filter, ΔfW : filter bandwidth (FWHM), fd : signal bandwidth (1/e 2).

Fig. 14.
Fig. 14.

Comparison of full-range images by using the least-squares method with (A) four frames and (B) five frames, and (C) BM-scan method.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

𝒩 [ k ( ξ j ) ] = q η S [ k ( ξ j ) ] { P s + P r + 2 P r P s cos [ 2 k ( ξ j ) z 0 + Δ ϕ C D ( k ) ] } ,
Δ ϕ ( ξ j ) = 2 k ( ξ j ) z 0 + Δ ϕ C D ( k ) ( 2 k ( ξ j ) z 0 + Δ ϕ C D ( k ) )
= 2 k ( ξ j ) [ z 0 z 0 ] .
I ( k j , t ) = p ( k j , t ) 2 + p ( k j , t ) r * ( k j ) exp [ i ( l π 2 ) ]
+ c . c . ,
l [ I ( k j , t ) ] ( n ) = l [ p ( k j , t ) 2 ] ( n )
+ l [ p ( k j , t ) r * ( k j ) ] ( n ) δ ( n f A N A f A 4 )
+ l [ p * ( k j , t ) r ( k j ) ] ( n ) δ ( n f A N A + f A 4 ) ,
I ( k j , t ) = p ( k j , t ) r * ( k j ) exp [ i ( l π 2 ) ] .
G = f A f A 2 f A 2 W 2 ( f ) d f ,
W ( f ) = { 0 f < f L 1 2 1 2 cos [ 2 π f f L ( 1 R ) ( f A 2 f L ) ] f L f < f L + ( 1 R ) ( f A 2 f L ) 2 1 f L + ( 1 R ) ( f A 2 f L ) 2 f < f L + ( 1 + R ) ( f A 2 f L ) 2 1 2 + 1 2 cos [ 2 π f f L ( 1 + R ) ( f A 2 f L ) 2 ( 1 R ) ( f A 2 f L ) ] f L + ( 1 + R ) ( f A 2 f L ) f < f A 2 2 0 f f A 2 ,
Δ f d = 4 f A Δ x π d ,

Metrics