Abstract

Two nodes are studied as means to perform selective optical-optical switching of four planar thin surface plasmon waveguides by interfering TEM10, TEM01, and TEM00 light beams incident upon a node. One node uses a flat-apex pyramidal reflector to reflect the incident light toward the waveguides’ ends. An alternative node is a simple square aperture, which couples surface plasmons through light diffraction at the aperture’s edges. Numerical calculations predict switching contrast, coupling efficiencies, and cross-talk between waveguides. Individually turned-off waveguides are shown to have their coupled surface plasmons attenuated by at least -10 dB and up to -21 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef] [PubMed]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  5. K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
    [CrossRef] [PubMed]
  6. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  7. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983), http://www.opticsinfobase.org/abstract.cfm?URI=ol-8-7-386.
    [CrossRef] [PubMed]
  8. Z. Sun and D. Zeng, "Coupling of surface plasmon waves in metal/dielectric gap waveguides and single interface waveguides," J. Opt. Soc. Am. B 24, 2883-2887 (2007), http://www.opticsinfobase.org.login.ezproxy.library.ualberta.ca/abstract.cfm?URI=josab-24-11-2883.
    [CrossRef]
  9. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-11-844.
    [CrossRef]
  10. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 477-494 (2006).
    [CrossRef]
  11. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
    [CrossRef] [PubMed]
  12. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Ma, 1995).
  13. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  14. L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  15. A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004).
    [CrossRef]
  16. J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
    [CrossRef]
  17. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  18. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
    [CrossRef]

2007

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Z. Sun and D. Zeng, "Coupling of surface plasmon waves in metal/dielectric gap waveguides and single interface waveguides," J. Opt. Soc. Am. B 24, 2883-2887 (2007), http://www.opticsinfobase.org.login.ezproxy.library.ualberta.ca/abstract.cfm?URI=josab-24-11-2883.
[CrossRef]

2006

2005

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

2004

A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2000

1994

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

1991

J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
[CrossRef]

1983

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berenger, J.-P.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Berini, P.

Berolo, E.

Boltasseva, A.

Bozhevolnyi, S. I.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
[CrossRef]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006).
[CrossRef] [PubMed]

Bradberry, G. W.

J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
[CrossRef]

Breukelaar, I.

Charbonneau, R.

Chau, K. J.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

Dechant, A.

A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Elezzabi, A. Y.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004).
[CrossRef]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Fafard, S.

Johnson, M.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

Ju, J. J.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Kim, J. T.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Kim, M.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Lahoud, N.

Lee, M.-H.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Leosson, K.

Lisicka-Shrzek, E.

Maradudin, A. A.

Mattiussi, G.

Meier, S. A.

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Nikolajsen, T.

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Park, S.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Park, S. K.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Park, Y. J.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
[CrossRef]

Scales, C.

Søndergaard, T.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Stegeman, G. I.

Sun, Z.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Wallis, R. F.

Yang, F.

J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
[CrossRef]

Zeng, D.

Appl. Phys. Lett.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, "40 Gbit/s light signal transmission in long-range surface plasmon waveguides," Appl. Phys. Lett. 91, 171117 (2007).
[CrossRef]

A. Dechant and A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004).
[CrossRef]

Contemporary Phys.

J. R. Sambles, G. W. Bradberry, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Phys. 32, 173-183 (1991).
[CrossRef]

J. Comput. Phys.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434 (2007).
[CrossRef]

L. A. Sweatlock, S. A. Meier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly-coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-spin-dependent terahertz light transport in spintronic-plasmonic media," Phys. Rev. Lett. 98, 133901 (2007).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Science

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Ma, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a). Cross-sectional view across the middle of a PR node. Here, a is the flat apex half-width along the centerline, d is the horizontal distance between the coupling end of a waveguide and its corresponding side of the pyramidal reflector, r is the distance of the coupling end of a waveguide from the center of the node, t is the metallic waveguide thickness, and pyramidal sidewall angle θ=35.26°. (b) Cross-sectional view in the plane of the metallic waveguides of the PR node, where W is the metallic waveguide width. (c) Cross-sectional view across the middle of a SA node. Here, a is the square aperture half-width along the centerline, and t is the metallic waveguide thickness. (d) Cross-sectional view in the plane of the metallic waveguides of the SA node. Here, b is the beveled corner width, and W is the waveguide width.

Fig. 2.
Fig. 2.

(a). Cross-sectional view of a pair of opposing waveguides illuminated with a (doughnut shaped) radially-polarized light beam. The black arrows indicate the electric field polarizations of peaks in the field. (b) Three-dimensional representation of the PR node illuminated with doughnut-shaped radially-polarized light showing coupling surface plasmons onto the metallic waveguides. The dark blue lines indicate the radial electric field polarization. (c) Three-dimensional representation of the SA node illuminated with the same radially-polarized light showing coupling surface plasmons onto the bottom surface of the metallic waveguides. The dark blue lines indicate the radial electric field polarization.

Fig. 3.
Fig. 3.

Relative intensity cross-section along the x-axis for a TEM10 beam (black dashes), TEM00| x beam (red dots), and the sum of the TEM10 and TEM00| x beams (blue line). Here, w 0=450 nm and A 0/A 1=1.2. Note the center region at x=0 where the TEM10 beam has nearly zero intensity while the beam resulting from the aforementioned interference has a non-zero intensity at the center.

Fig. 4.
Fig. 4.

Possible incident beam profiles consisting of one or two Hermite-Gaussian beams. (a) TEM10 mode. (b) TEM01 mode. (c) TEM10+TEM01, yielding radial polarization. (d) TEM10-EM00| x . (e) TEM10+TEM00| x . (f) TEM01 - TEM00| y . (g) TEM01+TEM00| y . The red arrows illustrate the direction of electric field polarization at an arbitrary point in time. The green bars indicate waveguides that couple surface plasmons. The grey bars indicate waveguides that have attenuated surface plasmon coupling.

Fig. 5.
Fig. 5.

Possible incident beam profiles resulting from the interference of three or more Hermite-Gaussian beams. (a) TEM10+TEM01+TEM00| x . (b) TEM10+TEM01 - TEM00| x . (c) TEM10+TEM01+TEM00| y . (d) TEM10+TEM01 - TEM00| y . (e) TEM10+TEM01+TEM00| x +TEM00| y . (f) TEM10+TEM01 - TEM00| x +TEM00| y . (g) TEM10+TEM01 - TEM00| x - TEM00| y . (h) TEM10+TEM01+TEM00| x - TEM00| y . The red arrows illustrate the direction of electric field polarization at an arbitrary point in time. The green bars indicate waveguides that couple surface plasmons. The grey bars indicate waveguides that have attenuated surface plasmon coupling.

Fig. 6.
Fig. 6.

Time-averaged surface plasmon intensity distribution measured at a cross-sectional cut of a PR node waveguide located at: (a) 570 nm and (b) 1710 nm from the waveguide’s coupling end. Other parameters for the PR node are a=180 nm, d=550 nm, r=730 nm, θ=35.26°, W=860 nm, and t=50 nm.

Fig. 7.
Fig. 7.

(a). Total coupled power of all modes with respect to the radially-polarized light beam incident on the node, α, and with respect to the power incident on the waveguide ends, β. (b) Total coupled power of the MOI with respect to the radially-polarized light beam incident on the node, α, and with respect to the power incident on the waveguide ends, β. Both plots are for a PR node having parameters a=180 nm, d=550 nm, r=730 nm, W=860 nm, θ=35.26°, and waveguide thickness t. The TEM10 and TEM01 modes comprising the radially-polarized light beam have a beam waist of w 0=450 nm. In each plot, the red dotted line indicates the power incident on the waveguide ends. Values are taken for D=190 nm (red circles), 280 nm (orange squares), 380 nm (green triangles), 480 nm (magenta stars), and 570 nm (blue diamonds), where D is the distance from the waveguide coupling ends.

Fig. 8.
Fig. 8.

(a). Surface plasmon MOI coupled power as a function of the distance from the waveguide end, D, for waveguide thickness t=50 nm (black squares), 60 nm (red circles), 70 nm (blue triangles), 80 nm (green diamonds), and 190 nm (purple stars). Fitted exponential decay curves are shown as solid lines. (b). Surface plasmon MOI coupled power 1/e propagation length, LSP , as a function of waveguide thickness, t, for a PR node having parameters a=180 nm, d=550 nm, r=730 nm, W=860 nm, and θ=35.26°. The fitted decay length is t 0=11 nm. The other fitted parameters are Linf =0.78 µm and C=24.7 µm.

Fig. 9.
Fig. 9.

Charge distributions across a plane including the W=860 nm waveguides’ surfaces for a PR node illuminated by: (a) TEM10 and TEM01 beams; (b) TEM10, TEM01, and TEM00| x beams; (c) TEM10, TEM01, TEM00| x , and TEM00| y beams; (d) a TEM10 beam; and (e) TEM10 and TEM00| x beams.

Fig. 10.
Fig. 10.

Time-averaged surface plasmon intensity distribution measured at a cross-sectional cut of a SA node waveguide located at: (a) D=570 nm and (b) D=1710 nm. Other parameters for the SA node are b=200 nm, W=860 nm, and t=50 nm.

Fig. 11.
Fig. 11.

Total coupled power, α, of the MOI with respect to radially-polarized light incident on a SA node measured 570 nm from the waveguides’ coupling ends. The parameters used are a=430 nm, t=50 nm, W=860 nm, and corner bevel width b. The TEM10 and TEM01 modes comprising the radially-polarized light beam both have a beam waist of w 0=600 nm.

Fig. 12.
Fig. 12.

Total coupled power of the MOI with respect to radially-polarized light incident on a SA node, α. Other parameters are a=430 nm, b=200 nm, W=860 nm, and waveguide thickness t. Calculated values are taken for D=380 nm (red circles), 480 nm (orange squares), 570 nm (green triangles), and 660 nm (magenta stars). The black squares indicate the estimated coupling efficiencies into the waveguide. The TEM10 and TEM01 modes comprising the radially-polarized light beam have a beam waist of w 0=600 nm.

Fig. 13.
Fig. 13.

Charge distributions across a plane including the waveguides’ surfaces for a SA node illuminated by: (a) TEM10 and TEM01 beams; (b) TEM10, TEM01, and TEM00| x beams; (c) TEM10, TEM01, TEM00| x , and TEM00| y beams; (d) a TEM10 beam; and (e) TEM10 and TEM00| x beams.

Fig. 14.
Fig. 14.

(a). Total coupled power, α, of the surface plasmon MOI for a SA node having parameters a=430 nm, b=200 nm, and W=860 nm as a function of distance from the waveguides’ ends, D, for t=50 nm (black squares), 60 nm (red circles), 70 nm (blue triangles), and 80 nm (green diamonds). (b) Surface charge distribution plot illustrating the divergence of surface plasmon waves for D≥1.1 µm. The dashed lines indicate the widths of the surface plasmon waves along the waveguides.

Fig. 15.
Fig. 15.

Cross-sectional electric field magnitude distributions for SA nodes having waveguide thicknesses of: (a) t=50 nm, and (b) t=80 nm. Other geometric parameters are a=430 nm, b=200 nm, and W=860 nm. The nodes are being illuminated by radially-polarized light having a beam waist of w 0=600 nm.

Tables (2)

Tables Icon

Table 1. Surface Plasmon Coupling with Respect to Incident Light Beam for On-Off States (PR Node)

Tables Icon

Table 2. Surface Plasmon Coupling with Respect to Incident Light Beam for On-Off States (SA Node)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

TEM 00 x : E x = A 0 exp ( ( x 2 + y 2 ) w 0 2 ) exp ( i ( ω t + φ ) ) x ̂ ( x - polarized )
TEM 10 x : E x = A 1 ( 2 x w 0 ) exp ( ( x 2 + y 2 ) w 0 2 ) exp ( i ω t ) x ̂ ( x - polarized )
TEM 00 y : E y = A 0 exp ( ( x 2 + y 2 ) w 0 2 ) exp ( i ( ω t + φ ) ) y ̂ ( y - polarized )
TEM 01 y : E y = A 1 ( 2 y w 0 ) exp ( ( x 2 + y 2 ) w 0 2 ) exp ( i ω t ) y ̂ ( y - polarized )
I SP , d = I surface , ext exp ( 2 k d , norm z z surface )
I SP , m = I surface , int exp ( 2 k m , norm z z surface )

Metrics