Abstract

We propose a hybrid mode-locking scheme for wave-breaking free fiber lasers based on a saturable Bragg reflector and the nonlinear polarization evolution in the fiber section. With this scheme, the self-starting operation is ensured by the saturable Bragg reflector while the nonlinear polarization evolution acts as an additional pulse shaper in the steady state. Owing to the sensitivity of the pulse dynamics to filtering effects, a tuning range of more than 10nm as well as the suppression of undesired modes of operation became possible. The impact of the modulation depth and the non-saturated losses is discussed via comparative measurements with different saturable Bragg reflectors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  2. T. Schreiber, B. Ortac, J. Limpert, and A. Tunnermann, "On the study of pulse evolution in ultrashort pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-8252.
    [CrossRef] [PubMed]
  3. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185-1191 (1993).
    [CrossRef]
  4. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef] [PubMed]
  5. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise,"Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
    [CrossRef]
  6. C. R. Doerr, H. A. Haus, E. P. Ippen, M. Shirasaki, and K. Tamura, "Additive-pulse limiting," Opt. Lett. 19, 31-33 (1994).
    [CrossRef] [PubMed]
  7. M. Horowitz and Y. Silberberg, "Nonlinear filtering by use of intensity-dependent polarization rotation in birefringent fibers," Opt. Lett. 22, 1760-1762 (1997).
    [CrossRef]
  8. S. Chen and J. Wang, "Self-starting issues of passive self-focussing mode locking," Opt. Lett. 16, 1689-1691 (1991).
    [CrossRef] [PubMed]
  9. J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
    [CrossRef]
  10. M. Guinea, N. Xiang, A. Vainionpaa, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, "Self-starting stretchedpulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers," Opt. Lett. 26, 1809-1811 (2001).
    [CrossRef]
  11. M. E. Fermann, D. Harter, J. D. Minelly, and G. G. Vienne, "Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses," Opt. Lett. 21, 967-969 (1996).
    [CrossRef] [PubMed]
  12. A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, "Hybrid mode-locking scheme for similariton fiber lasers," in Conference on Laser and Electro-Optics, CLEO Europe 2007 (Optical Society of America, 2007), paper CJ1-5-WED.
  13. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007).
    [CrossRef] [PubMed]
  14. http://www.batop.de/products/saturable absorber/SAM/SAMs 1040.html.
  15. R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. B 73, 653-662 (2001).
    [CrossRef]
  16. A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
    [CrossRef]
  17. F. Krausz, T. Brabec, and Ch. Spielmann, "Self-starting passive mode-locking," Opt. Lett. 16, 235-237 (1991).
    [CrossRef] [PubMed]
  18. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, "All-fiber similariton laser at 1?m without dispersion control," Opt. Express 15,6889-6893 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-11-6889.
    [CrossRef] [PubMed]
  19. H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
    [CrossRef]
  20. Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13607.
    [CrossRef] [PubMed]
  21. M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22, 799-801 (1997).
    [CrossRef] [PubMed]

2007 (5)

2006 (1)

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

2004 (1)

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

2001 (2)

1997 (2)

1996 (1)

1994 (1)

1993 (2)

D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185-1191 (1993).
[CrossRef]

J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
[CrossRef]

1991 (2)

Anderson, D.

Anis, H.

Barad, Y.

Brabec, T.

Brunel, M.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Buckley, J.

Buckley, J. R.

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Burgoyne, B.

Chartier, T.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Chen, J. C.

J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
[CrossRef]

Chen, S.

Chong, A.

Clark, W. G.

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Desaix, M.

Doerr, C. R.

Engelbrecht, M.

Fermann, M. E.

Godbout, N.

Guinea, M.

Harter, D.

Haus, H. A.

C. R. Doerr, H. A. Haus, E. P. Ippen, M. Shirasaki, and K. Tamura, "Additive-pulse limiting," Opt. Lett. 19, 31-33 (1994).
[CrossRef] [PubMed]

J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
[CrossRef]

Hideur, A.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Horowitz, M.

Ilday, F. ??.

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

C. R. Doerr, H. A. Haus, E. P. Ippen, M. Shirasaki, and K. Tamura, "Additive-pulse limiting," Opt. Lett. 19, 31-33 (1994).
[CrossRef] [PubMed]

J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
[CrossRef]

Karlsson, M.

Keinonen, J.

Keller, U.

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. B 73, 653-662 (2001).
[CrossRef]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Kracht, D.

Krausz, F.

Lacroix, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Limpert, J.

Lisak, M.

Logvin, Y.

Minelly, J. D.

Okhotnikov, O. G.

Ortac, B.

Paschotta, R.

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. B 73, 653-662 (2001).
[CrossRef]

Prochnow, O.

Quiroga-Teixeiro, M. L.

Renninger, W.

Ruehl, A.

Sajavaara, T.

Salhi, M.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Schreiber, T.

Schultz, M.

Shirasaki, M.

Silberberg, Y.

Spielmann, Ch.

Tamura, K.

Tunnermann, A.

Vainionpaa, A.

Vienne, G. G.

Wandt, D.

Wang, J.

Wise, F. W.

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise,"Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24, 1803-1806 (2007).
[CrossRef]

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Xiang, N.

Zhou, S.

Appl. Phys. B (1)

R. Paschotta and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. B 73, 653-662 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. C. Chen, H. A. Haus, and E. P. Ippen, "Stability of Lasers Mode Locked by Two Saturable Absorbers," IEEE J. Quantum Electron. 29, 1228-1232 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (9)

M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22, 799-801 (1997).
[CrossRef] [PubMed]

F. Krausz, T. Brabec, and Ch. Spielmann, "Self-starting passive mode-locking," Opt. Lett. 16, 235-237 (1991).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
[CrossRef] [PubMed]

C. R. Doerr, H. A. Haus, E. P. Ippen, M. Shirasaki, and K. Tamura, "Additive-pulse limiting," Opt. Lett. 19, 31-33 (1994).
[CrossRef] [PubMed]

M. Horowitz and Y. Silberberg, "Nonlinear filtering by use of intensity-dependent polarization rotation in birefringent fibers," Opt. Lett. 22, 1760-1762 (1997).
[CrossRef]

S. Chen and J. Wang, "Self-starting issues of passive self-focussing mode locking," Opt. Lett. 16, 1689-1691 (1991).
[CrossRef] [PubMed]

M. Guinea, N. Xiang, A. Vainionpaa, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, "Self-starting stretchedpulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers," Opt. Lett. 26, 1809-1811 (2001).
[CrossRef]

M. E. Fermann, D. Harter, J. D. Minelly, and G. G. Vienne, "Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses," Opt. Lett. 21, 967-969 (1996).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (2)

A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena in passively mode-locked fiber lasers," Phys. Rev. A 71, 053809 (2005).
[CrossRef]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, "Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser," Phys. Rev. A 65, 063811 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other (2)

http://www.batop.de/products/saturable absorber/SAM/SAMs 1040.html.

A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, "Hybrid mode-locking scheme for similariton fiber lasers," in Conference on Laser and Electro-Optics, CLEO Europe 2007 (Optical Society of America, 2007), paper CJ1-5-WED.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. QWP: quarter wave-plate; HWP: half wave-plate; PBS: polarizing beam splitter; ISO: polarization-dependent Faraday isolator; SBR: saturable Bragg reflector; HR: highly reflecting mirror; SMF: single-mode fiber; WDM: wavelength-division multiplexer.

Fig. 2.
Fig. 2.

(a) First RF-beat note and (b) optical spectrum of the free-running hybrid mode-locked laser with SAM-1040-40. (c) and (d) corresponding measurement of the laser mode-locked by NPE only.

Fig. 3.
Fig. 3.

Stability diagram of the laser in the plane of the positions of the half wave-plate and the quarter wave-plate 2.

Fig. 4.
Fig. 4.

Evolution of the optical spectra when variing the position of QWP2 in the setup with SAM-1040-40.

Fig. 5.
Fig. 5.

Transition from bunched noise-like operation to wave-breaking free operation taken with a photonic bandgap fiber for dispersion control by changing the position of QWP2. Single pulse operation corresponds to the lowest spectrum whereas the other corresponds to bunched noise-like pules.

Fig. 6.
Fig. 6.

Autocorrelation traces taken with a photonic bandgap fiber for dispersion control.

Tables (2)

Tables Icon

Table 1. Overview about the basic data of the saturable Bragg reflectors.

Tables Icon

Table 2. Experimental results on the self-starting capability.

Metrics