Abstract

Ultrafast high-density photonic integrated circuit devices (PICDs) are not easily obtained using traditional index-guiding mechanisms. In this paper, photonic bandgap crystal resonator enhanced, laser-controlled modulations of optical interconnect PICDs were achieved in slab-type mix-guiding configuration - through developed CMOS-compatible processing technologies. The devices, with smallest critical dimensions of 90nm have footprints of less than 5×5µm2. Quality-factors an order larger than previously realized was achieved. Through use of effective coupling structures; simultaneous alignment for probing and pumping laser beams, optical measurements of both instantaneous free carriers induced device modulations were obtained together with thermo-optical effects characterizations.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator

Jan Hendrik Wülbern, Alexander Petrov, and Manfred Eich
Opt. Express 17(1) 304-313 (2009)

Tunable photonic crystal microcavities

David M. Pustai, Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather
Appl. Opt. 41(26) 5574-5579 (2002)

Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region

Richard Soref, Joshua R. Hendrickson, and Julian Sweet
Opt. Express 24(9) 9369-9382 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. S. Noda and T. Baba, “Roadmap on photonic crystal,” Kluwer Academic Publisher, London, 2003.
  4. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998).
    [Crossref]
  5. H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
    [Crossref]
  6. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
    [Crossref] [PubMed]
  7. H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
    [Crossref] [PubMed]
  8. M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,” Opt. Lett. 28, 522–524 (2003).
    [Crossref] [PubMed]
  9. K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
    [Crossref]
  10. S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
    [Crossref]
  11. Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
    [Crossref]
  12. Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
    [Crossref]
  13. Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
    [Crossref]

2006 (3)

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

2005 (1)

2004 (2)

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

2003 (2)

2002 (1)

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

1998 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Baba, T.

S. Noda and T. Baba, “Roadmap on photonic crystal,” Kluwer Academic Publisher, London, 2003.

Bourouina, T.

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Crawford, G. P.

Dressel, M.

Duvillaret, L.

Escuti, M. J.

Fan, S.

Hane, K.

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
[Crossref]

Haus, H. A.

Hong, M. H.

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

Kanamori, Y.

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
[Crossref]

Kuzel, P.

Leonard, S.

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

Liu, A. Q.

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Manolatou, C.

Nemec, H.

Noda, S.

S. Noda and T. Baba, “Roadmap on photonic crystal,” Kluwer Academic Publisher, London, 2003.

Pashkin, A.

Qi, J.

Schilling, M.

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

Sebastian, M. T.

Singh, J.

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Soljacic, M.

Teo, H. G.

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Teo, Selin H. G.

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

Umemori, K.

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
[Crossref]

Van Driel, W.

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

Villeneuve, P. R.

Wehrspohn, J.

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yanik, M. F.

Yu, M. B.

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Zhang, J. B.

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

Appl. Phys. Lett. (2)

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89, 021102 (2006).
[Crossref]

Selin H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[Crossref]

J. Vac. Sci. Technol. B (2)

Selin H. G. Teo, A. Q. Liu, J. Singh, and M. B. Yu, “High resolution and aspect ratio two-dimensional photonic band-gap crystal,” J. Vac. Sci. Technol. B 22, 2640–2648 (2004).
[Crossref]

Selin H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Synthesized Processing Techniques for Monolithic Integration of Nanometers-Scale Hole Type Photonic Bandgap Crystal with Micrometers-Scale Microelectromechanical Structures,” J. Vac. Sci. Technol. B 24, 1689–1701 (2006).
[Crossref]

Microsys. Tech. (1)

H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsys. Tech. 10, 400–406 (2004).
[Crossref]

Opt. Lett. (4)

Phys. Rev. B (1)

S. Leonard, W. Van Driel, M. Schilling, and J. Wehrspohn, “Ultrafast band-edge tuning of a twodimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B 66, 161102-1 (2002).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Other (1)

S. Noda and T. Baba, “Roadmap on photonic crystal,” Kluwer Academic Publisher, London, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Design of PhC optical intersection device, with degenerate mode profiles of resonator structure calculated as given in the inset on the right. (b) Configurations of high order resonators with their FDTD calculated frequency responses.

Fig. 2.
Fig. 2.

Plane view SEM image of Si PhC optical interconnect device (a) with zoomed in embedded features; (b) with macro coupling structures and integrated waveguides.

Fig. 3.
Fig. 3.

Optical measurement of (a) Lorentzian spectrum response from a 3×3, and (b) 5×5 order resonator cavity response.

Fig. 4.
Fig. 4.

Instantaneous photonic crystal output modulation by the on/off toggling of the high intensity applied continuous wave pump laser.

Fig. 5.
Fig. 5.

Center wavelength shifts of the 3×3 PhC optical intersection resonator as it was thermo-optically modulated by progressively higher pump-power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ε = N e 2 m * ε 0 ( ω 2 + τ d 2 )

Metrics