Abstract

Currently subwavelength surface plasmon polariton (SPP) waveguides under intensive theoretical and experimental studies are mostly based on the geometrical singularity property of such waveguides. Typical examples include the metal-insulator-metal based waveguide and the metallic fiber. Both types of waveguides support a mode with divergent propagation constant as the waveguides’ geometry (metal gap distance or fiber radius) shrinks to zero. Here we study an alternative way of achieving subwavelength confinement through deploying two materials with close but opposite epsilon values. The interface between such two materials supports a near-resonant SPP. By examining the relationship between mode propagation loss and the mode field size for both planar and fiber waveguides, we show that waveguides based on near-resonant SPP can be as attractive as those solely based on geometrical tailoring. We then explicitly study a silver and silicon based waveguide with a 25nm core size at 600nm wavelength, in its properties like single-mode condition, mode loss and group velocity. It is shown that loss values of both materials have to be decreased by ~1000 times in order to have 1dB/µm propagation loss. Hence we point out the necessity of novel engineering of low-loss metamaterials, or introducing gain, for practical applications of such waveguides. Due to the relatively simple geometry, the proposed near-resonant SPP waveguides can be a potential candidate for building optical circuits with a density close to the electronic counterpart.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Craig, G. A. Olson, and D. Sarid, "Experimental observation of the long-range surface-plasmon polariton," Opt. Lett. 8, 380 (1983).
    [CrossRef] [PubMed]
  2. Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
    [CrossRef]
  3. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
    [CrossRef]
  4. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
    [CrossRef]
  5. G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightw. Technol. 25, 2511-2521 (2007).
    [CrossRef]
  6. E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
    [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
    [CrossRef]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
    [CrossRef]
  9. M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B 24, 2333-2342 (2007).
    [CrossRef]
  10. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 404 (2004).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  12. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006).
    [CrossRef]
  13. B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants of Solids, Part II, Subpart 1 (Academic Press, 1985).
  15. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
    [CrossRef]
  16. B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phy. Lett. 90, 114 (2007).
  17. D. Parekh, L. Thylén, and C. Chang-Hasnain, "Metal nanoparticle metamaterials for engineering dielectric constants and their applications to near resonant surface plasmon waveguides," in Frontiers in Optics, OSA Technical Digest Series, p. FThF6 (Optical Society of America, 2007).

2007 (4)

G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightw. Technol. 25, 2511-2521 (2007).
[CrossRef]

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
[CrossRef]

M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B 24, 2333-2342 (2007).
[CrossRef]

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phy. Lett. 90, 114 (2007).

2006 (1)

2005 (4)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 404 (2004).
[CrossRef]

1994 (1)

B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994).
[CrossRef]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
[CrossRef]

1983 (2)

A. E. Craig, G. A. Olson, and D. Sarid, "Experimental observation of the long-range surface-plasmon polariton," Opt. Lett. 8, 380 (1983).
[CrossRef] [PubMed]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Berini, P.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Craig, A. E.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightw. Technol. 25, 2511-2521 (2007).
[CrossRef]

Feigenbaum, E.

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Kuwamura, Y.

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Olson, G. A.

Orenstein, M.

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

Prade, B.

B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
[CrossRef]

Qiu, M.

Sarid, D.

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 404 (2004).
[CrossRef]

Tada, O.

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightw. Technol. 25, 2511-2521 (2007).
[CrossRef]

Vinet, J. Y.

B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phy. Lett. 90, 114 (2007).

Wang, G. P.

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phy. Lett. 90, 114 (2007).

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

Yan, M.

Appl. Phy. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. OKamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phy. Lett. 87, 114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phy. Lett. 87, 106 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Planar metal heterostructures for nanoplasmonic waveguides," Appl. Phy. Lett. 90, 114 (2007).

J. Lightw. Technol. (2)

G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightw. Technol. 25, 2511-2521 (2007).
[CrossRef]

E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
[CrossRef]

J. Lightwave Technol. (1)

B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

Y. Kuwamura, M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," J. Phys. Soc. Jpn. 52, 2350-2355 (1983).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 556-572 (1991).
[CrossRef]

Phys. Rev. Lett. (3)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 404 (2004).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 802 (2005).
[CrossRef]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 901 (2005).
[CrossRef]

Other (2)

D. Parekh, L. Thylén, and C. Chang-Hasnain, "Metal nanoparticle metamaterials for engineering dielectric constants and their applications to near resonant surface plasmon waveguides," in Frontiers in Optics, OSA Technical Digest Series, p. FThF6 (Optical Society of America, 2007).

E. D. Palik, Handbook of Optical Constants of Solids, Part II, Subpart 1 (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a),(b) Effect of gap distance on the guided SPP mode of a MIM waveguide; (c),(d) Effect of ε + on the guided SPP mode of a MI waveguide. Insets in (b) and (d) depict the guiding structures.

Fig. 2.
Fig. 2.

(a),(b) Effect of geometrical tailoring on guided fiber SPP mode; (c)–(d) Material effects on guided SPP fiber mode. Inset in (b) depicts the fiber structure.

Fig. 3.
Fig. 3.

(a) Schematic diagram of a general near-resonant SPP waveguide. (b) Major mode field (H x ) supported by a sample near-resonant SPP waveguide (ε +=2.1, ε -=-2.3, ε 1,2,3,4=1, w=50nm, λ=600nm). (c) H x field in the same waveguide but far from the singular condition (ε -=-15).

Fig. 4.
Fig. 4.

Geometric dispersions of first two modes of the waveguide with respect to w. Loss is assumed to be zero. Red dots: the n eff values when ε” values of both Ag and Si are reduced to their 1%.

Fig. 5.
Fig. 5.

Field plots of the SPP-based waveguide with a 25nm-sized core. Three panels share the same color scale. (a) H x field (min:0, max:1.27); (b) H y field (min:-5.02e-2, max:5.02e- 2); and (c) z-component Poynting vector S z (min:-6.0e2, max:6.2e2). Axis unit: nm.

Fig. 6.
Fig. 6.

Contour plot of the loss values in dB/µm when the ε” values of both Ag and Si are varied in fractions of their natural values at room temperature.

Tables (1)

Tables Icon

Table 1. Group velocity and group velocity dispersion

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = ε + ε ε + + ε ,

Metrics