Abstract

The wavelength dispersions of third-order nonlinear optical response for Cu nanoparticle materials have been experimentally evaluated from transient spectra measured with the pump-probe method. The evaluated dispersions were analyzed on hot electron contribution using the Maxwell-Garnett approximation with the Drude model for intraband transition and first principles calculation for interband transition. The wavelength dispersion didn’t directly reflect the dispersion of a local electric field factor. The interband transition term in hot electron contribution strongly dominated the dispersion around the surface plasmon resonance by Fermi smearing. Intrinsic interband contribution to the nonlinearity was suggested from the analysis. Particle-size and host-medium dependence of the nonlinearity were also simulated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Palpant, "Third-order nonlinear optical response of metal nanoparticles," in Non-linear Optical Properties of Matter, M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, eds., (Springer, Dordrecht, 2006).
  2. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
    [CrossRef]
  3. J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
    [CrossRef]
  4. K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33, 2461-2464 (1986).
    [CrossRef] [PubMed]
  5. T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999).
    [CrossRef]
  6. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
    [CrossRef]
  7. C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
    [CrossRef]
  8. H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
    [CrossRef]
  9. Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007).
    [CrossRef] [PubMed]
  10. N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
    [CrossRef]
  11. Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
    [CrossRef]
  12. M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
    [CrossRef]
  13. J. S. Pedersen, "Determination of size distributions from small-angle scattering data for systems with effective hard-sphere interactions," J. Appl. Crystallogr. 27, 595-608 (1994).
    [CrossRef]
  14. Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
    [CrossRef]
  15. R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972).
    [CrossRef]
  16. C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
    [CrossRef]
  17. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge Studies in Modern Optics: 9 (Cambridge University Press, Cambridge, 1990).
  18. P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964).
    [CrossRef]
  19. W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965).
    [CrossRef]
  20. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
    [CrossRef]
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
    [CrossRef] [PubMed]
  22. G. Harbeke, Optical Properties of Solids, F. Abeles, ed., (North-Holland, Amsterdam, 1972) pp. 21-92.
  23. H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997).
    [CrossRef]
  24. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
    [CrossRef]
  25. H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
    [CrossRef]
  26. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  27. G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986).
    [CrossRef]
  28. Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
    [CrossRef]

2007 (3)

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
[CrossRef]

Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007).
[CrossRef] [PubMed]

2006 (2)

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

2005 (1)

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

2004 (1)

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

2003 (1)

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

2001 (1)

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
[CrossRef]

2000 (2)

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

1999 (2)

T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

1997 (1)

H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997).
[CrossRef]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef] [PubMed]

1994 (2)

J. S. Pedersen, "Determination of size distributions from small-angle scattering data for systems with effective hard-sphere interactions," J. Appl. Crystallogr. 27, 595-608 (1994).
[CrossRef]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

1990 (1)

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

1986 (2)

G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986).
[CrossRef]

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33, 2461-2464 (1986).
[CrossRef] [PubMed]

1972 (2)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972).
[CrossRef]

1965 (1)

W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965).
[CrossRef]

1964 (1)

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964).
[CrossRef]

Acioli, L. H.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

Bigot, J. -Y.

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

Broyer, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef] [PubMed]

Cheong, B.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Cho, K. M.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Christofilos, D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cottancin, E.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Daunois, A.

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

Eesley, G. L.

G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986).
[CrossRef]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef] [PubMed]

Fatti, N. D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Fujimori, H.

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

Fujimoto, J. G.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

Gaudry, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Gritsyna, V. T.

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Halté, V.

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

Hamada, T.

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

Hayashi, N.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

Hohenberg, P.

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964).
[CrossRef]

Hono, K.

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

Ippen, E. P.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

Jeong, J.-H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Jun, H.-S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Kageshima, H.

H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997).
[CrossRef]

Kim, D. S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Kim, I. H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Kim, W. M.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Kishimoto, K.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Kishimoto, N.

Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007).
[CrossRef] [PubMed]

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Kohn, W.

W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965).
[CrossRef]

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964).
[CrossRef]

Kono, K.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Lee, C. G.

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Lee, K.-S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Lee, T. S.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Lermé, J.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Leung, K. M.

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33, 2461-2464 (1986).
[CrossRef] [PubMed]

Li, Z. Y.

T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999).
[CrossRef]

Loukakos, P. A.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Lu, J.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Lynch, D. W.

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972).
[CrossRef]

Merle, J. -C.

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

Momida, H.

H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
[CrossRef]

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Nakamura, A.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

Ohno, T.

H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
[CrossRef]

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Ohnuma, M.

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

Omi, S.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

Onodera, H.

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

Pan, T.

T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999).
[CrossRef]

Pedersen, J. S.

J. S. Pedersen, "Determination of size distributions from small-angle scattering data for systems with effective hard-sphere interactions," J. Appl. Crystallogr. 27, 595-608 (1994).
[CrossRef]

Pederson, J. S.

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

Pellarin, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef] [PubMed]

Plaksin, O. A.

Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007).
[CrossRef] [PubMed]

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Rosei, R.

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972).
[CrossRef]

Sham, L. J.

W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965).
[CrossRef]

Shiraishi, K.

H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997).
[CrossRef]

Sun, C. -K.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

Takagi, Y.

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Takeda, Y.

Y. Takeda, O. A. Plaksin, and N. Kishimoto, "Dispersion of nonlinear dielectric function of Au nanoparticles in silica glass," Opt. Express 15, 6010-6018 (2007).
[CrossRef] [PubMed]

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Uda, T.

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Umeda, N.

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Vallée, F.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

Vanderbilt, D.

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

Voisin, C.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

Yamamoto, T.

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Yoon, S.-H.

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Chem. Phys. (1)

J. -Y. Bigot, V. Halté, J. -C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

J. Appl. Crystallogr. (1)

J. S. Pedersen, "Determination of size distributions from small-angle scattering data for systems with effective hard-sphere interactions," J. Appl. Crystallogr. 27, 595-608 (1994).
[CrossRef]

J. Appl. Phys. (1)

M. Ohnuma, K. Hono, H. Onodera, H. Fujimori, and J. S. Pederson, "Microstructures and magnetic properties of Co - Al - O granular thin flms," J. Appl. Phys. 87, 817-823 (2000).
[CrossRef]

J. Opt. Soc Am. B (1)

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, "Dispersion curve of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc Am. B 20, 1227-1232 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, and E. Iwamoto, "High-current heavy-ion accelerator system and its application to material modification," Jpn. J. Appl. Phys. 40, 1087-1090 (2001).
[CrossRef]

H. Momida, T. Hamada, and T. Ohno, "First-principles study of Dielectric Properties of Amorphous High-k Materials," Jpn. J. Appl. Phys. 46, 3255-3260 (2007).
[CrossRef]

Nucl. Instrum. Methods B (2)

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250, 372-376 (2006).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, and N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148, 1029-1033 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. (2)

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev. 136, B864-B871 (1964).
[CrossRef]

W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev. 140, A1133-A1138 (1965).
[CrossRef]

Phys. Rev. A (1)

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33, 2461-2464 (1986).
[CrossRef] [PubMed]

Phys. Rev. B (8)

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416 (2004).
[CrossRef]

D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990).
[CrossRef]

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972).
[CrossRef]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50, 15337-15348 (1994).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

G. L. Eesley, "Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses," Phys. Rev. B 33, 2144-2151 (1986).
[CrossRef]

H. Kageshima and K. Shiraishi, "Momentum-matrix-element calculation using pseudopotentials," Phys. Rev. B 56, 14985-14992 (1997).
[CrossRef]

H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, and T. Ohno, "Dielectric constants of amorphous hafnium aluminates: First-principles study," Phys. Rev. B 75, 195105 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865-3868 (1996).
[CrossRef] [PubMed]

Phys. State Solidi (1)

T. Pan and Z. Y. Li, "Optical bistability of metallic particle composites," Phys. State Solidi B 213, 203-210 (1999).
[CrossRef]

Phys. State Solidi A (1)

H.-S. Jun, K.-S. Lee, S.-H. Yoon, T. S. Lee, I. H. Kim, J.-H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M. Kim, "3rd order nonlinear optical properties of Au:SiO2 nanocomposite films with varying Au particle size," Phys. State Solidi A 203, 1211-1216 (2006).
[CrossRef]

Surf. Coat. Technol. (1)

Y. Takeda, O. A. Plaksin, K. Kono, and N. Kishimoto, "Nonlinear optical properties of Cu nanoparticles in various insulators fabricated by negative ion implantation," Surf. Coat. Technol. 196, 30-33 (2005).
[CrossRef]

Other (3)

B. Palpant, "Third-order nonlinear optical response of metal nanoparticles," in Non-linear Optical Properties of Matter, M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, eds., (Springer, Dordrecht, 2006).

G. Harbeke, Optical Properties of Solids, F. Abeles, ed., (North-Holland, Amsterdam, 1972) pp. 21-92.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge Studies in Modern Optics: 9 (Cambridge University Press, Cambridge, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Steady state and transient optical spectra of Cu:SiO2 (solid curve: steady-state, dashed curve: transient).

Fig. 2.
Fig. 2.

Experimentally evaluated nonlinear dielectric function of Cu:SiO2 material.

Fig. 3.
Fig. 3.

Numerical calculation of f 2 l |fl |2 for Cu:SiO2 material.

Fig. 4.
Fig. 4.

Dielectric function of bound electron term at 300K calculated by first principles calculation with data extracted from ref [26] (solid curve: experimental, dashed curve: calculated with an offset).

Fig. 5.
Fig. 5.

Calculated nonlinear dielectric function of bound electron term for Copper (without an offset).

Fig. 6.
Fig. 6.

Calculated nonlinear dielectric functions, (a) Δεm and (b) ΔεMG for Cu:SiO2 material.

Fig. 7.
Fig. 7.

Calculated nonlinear dielectric functions, (a) Δεm and (b) ΔεMG for Cu:SrTiO3 material.

Fig. 8.
Fig. 8.

Particle-size dependence of simulated ΔεMG for Cu:SiO2 material.

Fig. 9.
Fig. 9.

Host-medium dependence of simulated ΔεMG for Cu nanoparticle material.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ R R = 1 R R n Δ n + 1 R R k Δ k Δ T T = 1 T T n Δ n + 1 T T k Δ k ,
Δ ε = 2 ( n Δ n k Δ k ) , Δ ε " = 2 ( n Δ k + k Δ n ) ,
Δ ε = 3 4 χ eff ( 3 ) ( ω probe ; ω pump , ω pump , ω probe ) E 2 ,
χ eff ( 3 ) ( ω probe ; ω pump , ω pump , ω probe ) = p f l 2 f l 2 χ m ( 3 ) ( ω probe ; ω pump , ω pump , ω probe ) ,
f l = 3 ε d ( ω ) ε m ( ω ) + 2 ε d ( ω ) .
χ ( 3 ) ( S I ) χ ( 3 ) ( e s u ) = 4 π ( 10 4 c ) 2 , ( c = 3 · 10 8 ) .
ε MG = ε d 1 + 2 p ( ε m ε d ) ( ε m + 2 ε d ) 1 p ( ε m ε d ) ( ε m + 2 ε d ) ,
ε m ( ω ) = ε free ( ω ) + ε bound ( ω ) .
ε free ( ω ) = 1 ( ћ ω p ) 2 ћ ω ( ћ ω + i ћ ω τ ) ,
ћ ω τ = ћ ω τ 0 + A ћ v F R
ε " bound ( ω ) = 8 π 2 e 2 m e ω 2 V k , i , j P ij , α k P ij , β k f ( E i k ) [ 1 f ( E i k ) ] δ ( E j k E i k h ω ) ,
ε bound ( ω ) = 1 + 2 π P 0 ω ε " bound ( ω ) ω 2 ω 2 d ω .
Δ ε bound = ε bound , pumped _ state ε bound , 300 K .
Δ ε MG = ε MG , pumped _ state ε MG , 300 K .

Metrics