Abstract

We have recorded nanoscale topography and infrared chemical fingerprints of attomole layered lipids consisting of dimyristoylphosphatidylcholine on silicon and mica. Lipids deposited on mica built stacks consisting of up to 25 bilayers, each approximately 5 nm thick, spanning a range from 5–125 nm in height. Contrast evaluation as a function of layer thickness provides the near-field depth resolution.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
    [CrossRef] [PubMed]
  2. G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
    [CrossRef] [PubMed]
  3. M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
    [CrossRef]
  4. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
    [CrossRef]
  5. D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
    [CrossRef]
  6. B. Dragnea and S. R. Leone, "Advances in submicron infrared vibrational band chemical imaging," Int. Rev. Phys. Chem. 20, 59-92 (2001).
    [CrossRef]
  7. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004).
    [CrossRef]
  8. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13, 8893-8899 (2005).
    [CrossRef] [PubMed]
  9. N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
    [CrossRef] [PubMed]
  10. J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
    [CrossRef] [PubMed]
  11. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).
    [CrossRef] [PubMed]
  12. J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express 16, 1529-1545 (2008).
    [CrossRef] [PubMed]
  13. U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
    [CrossRef]
  14. I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
    [CrossRef]
  15. Z. Arsov and L. Quaroni, "Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy," Chem. Phys. Lipids 150, 35-48 (2007).
    [CrossRef] [PubMed]
  16. T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
    [CrossRef]
  17. F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
    [CrossRef]
  18. N. Ocelic, A. J. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett. 89, 101124-1-101124-3 (2006).
    [CrossRef]
  19. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, "WSxM: A software for scanning probe microscopy and a tool for nanotechnology," Rev. Sci. Instrum. 78, 013705-1-013705-8 (2007).
    [CrossRef] [PubMed]
  20. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
    [CrossRef]
  21. A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
    [CrossRef] [PubMed]

2008

2007

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

Z. Arsov and L. Quaroni, "Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy," Chem. Phys. Lipids 150, 35-48 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007).
[CrossRef] [PubMed]

2006

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

2005

2004

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004).
[CrossRef]

A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
[CrossRef] [PubMed]

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

2002

A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
[CrossRef] [PubMed]

2001

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

B. Dragnea and S. R. Leone, "Advances in submicron infrared vibrational band chemical imaging," Int. Rev. Phys. Chem. 20, 59-92 (2001).
[CrossRef]

1999

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

1996

T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
[CrossRef]

1994

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Aizpurua, J.

Anderson, N.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

Anger, P.

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

Arsov, Z.

Z. Arsov and L. Quaroni, "Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy," Chem. Phys. Lipids 150, 35-48 (2007).
[CrossRef] [PubMed]

Auger, M.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

Bainier, C.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Bergner, A.

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Bräuchle, Ch.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Brehm, M.

Bründermann, E.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Buffeteau, T.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
[CrossRef]

Büning, H.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Courjon, D.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Cvitkovic, A.

Desbat, B.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
[CrossRef]

Diem, M.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Dragnea, B.

B. Dragnea and S. R. Leone, "Advances in submicron infrared vibrational band chemical imaging," Int. Rev. Phys. Chem. 20, 59-92 (2001).
[CrossRef]

Egner, A.

A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Endre??, Th.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Engels, P.

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Eyquem, D.

T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
[CrossRef]

García de Abajo, F. J.

Grunwald, Ch.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

Guarino, A. J.

A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
[CrossRef] [PubMed]

Hallek, M.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Hartschuh, A.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

Havenith, M.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Hecker, A.

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Hell, St.

A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Hillenbrand, R.

Jacobs, S.

A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Keilmann, F.

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13, 8893-8899 (2005).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Kopf, I.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

Lasch, P.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Leone, S. R.

B. Dragnea and S. R. Leone, "Advances in submicron infrared vibrational band chemical imaging," Int. Rev. Phys. Chem. 20, 59-92 (2001).
[CrossRef]

Madeja, F.

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Matthäus, C.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Meixner, A. J.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

Merker, U.

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Miljkovic, M.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Miller, L.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Novotny, L.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

Ocelic, N.

Pézolet, M.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

Picard, F.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

Qian, H.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

Quaroni, L.

Z. Arsov and L. Quaroni, "Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy," Chem. Phys. Lipids 150, 35-48 (2007).
[CrossRef] [PubMed]

Ried, M. U.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Romeo, M.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Samson, J. S.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Schwaab, G.

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Seisenberger, G.

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Taubner, T.

Tulenko, T. N.

A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
[CrossRef] [PubMed]

Urban, W.

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Wieck, A. D.

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Wollny, G.

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Wrenn, S. P.

A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
[CrossRef] [PubMed]

Biochemistry

A. J. Guarino, T. N. Tulenko, and S. P. Wrenn, "Cholesterol crystal nucleation from enzymatically modified lowdensity lipoproteins: Combined effect of sphingomyelinase and cholesterol esterase," Biochemistry 43, 1685-1693 (2004).
[CrossRef] [PubMed]

Biophys. J.

F. Picard, T. Buffeteau, B. Desbat, M. Auger, and M. Pézolet, "Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy," Biophys. J. 76, 539-551 (1999).
[CrossRef]

Chem. Phys. Lipids

Z. Arsov and L. Quaroni, "Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy," Chem. Phys. Lipids 150, 35-48 (2007).
[CrossRef] [PubMed]

Infrared Phys. Technol.

M. Diem, M. Romeo, C. Matthäus, M. Miljkovic, L. Miller, and P. Lasch, "Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources," Infrared Phys. Technol. 45, 331-338 (2004).
[CrossRef]

Int. Rev. Phys. Chem.

B. Dragnea and S. R. Leone, "Advances in submicron infrared vibrational band chemical imaging," Int. Rev. Phys. Chem. 20, 59-92 (2001).
[CrossRef]

J. Phys. Chem. C

I. Kopf, J. S. Samson, G. Wollny, Ch. Grunwald, E. Bründermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111, 8166-8171 (2007).
[CrossRef]

Nano Lett.

N. Anderson, P. Anger, A. Hartschuh, L. Novotny, "Subsurface Raman Imaging with Nanoscale Resolution," Nano Lett. 6, 744-749 (2006).
[CrossRef] [PubMed]

Nature

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. Lond. A

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004).
[CrossRef]

Phys. Chem. Chem. Phys.

J. S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, "Setup of a scanning near field infrared microscope (SNIM): Imaging of sub-surface nano-structures in galliumdoped silicon," Phys. Chem. Chem. Phys. 8, 753-758 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.

A. Egner, S. Jacobs, and St. Hell, "Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. 99, 3370-3375 (2002).
[CrossRef] [PubMed]

Rep. Prog. Phys.

D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994).
[CrossRef]

Rev. Sci. Instrum.

U. Merker, P. Engels, F. Madeja, M. Havenith, and W. Urban, "High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 ?m wavelength region," Rev. Sci. Instrum. 70, 1933-1938 (1999).
[CrossRef]

Science

G. Seisenberger, M. U. Ried, Th. Endre�?, H. Büning, M. Hallek, and Ch. Bräuchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Surf. Interface Anal.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, "Tip-enhanced optical spectroscopy for surface analysis in biosciences," Surf. Interface Anal. 381472-1480 (2006).
[CrossRef]

Vib. Spectrosc.

T. Buffeteau, B. Desbat, and D. Eyquem, "Attenuated total reflection Fourier transform infrared microspectroscopy: Theory and application to polymer samples," Vib. Spectrosc. 11, 29-36 (1996).
[CrossRef]

Other

N. Ocelic, A. J. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," Appl. Phys. Lett. 89, 101124-1-101124-3 (2006).
[CrossRef]

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, "WSxM: A software for scanning probe microscopy and a tool for nanotechnology," Rev. Sci. Instrum. 78, 013705-1-013705-8 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Set-up of the grating tunable CO-laser illuminated SNIM. The IR scatter light from the tip-sample system is collected with a CaF2-lens and MCT-detector. A HeNe-laser is used for optical alignment. (b) Illustration of the 5 nm thick bilayer and stack formation by fusion of multilamellar vesicles to a substrate. (c) Topography image of a lipid patch with 4 bilayers (20 nm height) and 3 additional bilayers in a smaller patch on top corresponding to 35 nm total height above the mica substrate.

Fig. 2.
Fig. 2.

(a) Topography of DMPC bilayers stacks and vesicles on Si. (b) Marked section of (a) showing mainly the substrate Si (black). (c) Height, h, profile showing ≈1 µm thick lipid coverage. (d) Near-field contrast, experimental C and theoretical K, of DMPC on Si as a function of laser frequency, ν. The error bar represents the maximum error of the whole data set (connecting line as a guide to the eye). The FTIR absorption is shown as absorbance A with the refractive index n for both types of measurement (ATR in blue and GI in red).

Fig. 3.
Fig. 3.

(a) Near-field contrast, C, of DMPC referenced to Au and mica as a function of height, h, and bilayer number (each 5 nm thick) for different frequency. The contour line encloses the most frequent data pairs of topography height and near-field contrast at 1744 cm-1 (orange). The 2f-sensitivity limit (C≈0.15) corresponds to 3 bilayers. Selected bilayer patches are given as data points. The blue line represents the contrast calculated from the cross-section σ (see inset). The inset shows Au nanoparticles visible at 1658 cm-1 due to low DMPC contrast. (b) Topography of DMPC stacked bilayers on mica (5×5 µm2). In the color scale the maximum topography corresponds to 128 nm (noise level: 2 nm). (c) Near-field image measured at 1744 cm-1 with a maximum voltage of 138 mV (noise level: 20 mV). Selected image areas (1–10) are shown in a bar diagram.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = ε MICA ( 1 + ε MICA ε LIPID ε LIPID h 2 R ) 1

Metrics