Abstract

We present a metamaterial that acts as a strongly resonant absorber at terahertz frequencies. Our design consists of a bilayer unit cell which allows for maximization of the absorption through independent tuning of the electrical permittivity and magnetic permeability. An experimental absorptivity of 70% at 1.3 terahertz is demonstrated. We utilize only a single unit cell in the propagation direction, thus achieving an absorption coefficient α=2000 cm-1. These metamaterials are promising candidates as absorbing elements for thermally based THz imaging, due to their relatively low volume, low density, and narrow band response.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phy. 69, 301–326 (2006).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  3. X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47, 3667–3677 (2002).
    [Crossref] [PubMed]
  4. T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).
  5. F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
    [Crossref]
  6. D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
    [Crossref]
  7. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
    [Crossref]
  8. H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 11, 2549–2554 (2003).
  9. J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
    [Crossref]
  10. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
    [Crossref]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref] [PubMed]
  12. H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
    [Crossref] [PubMed]
  13. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [Crossref] [PubMed]
  14. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  15. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 86, 3996 (2000).
  17. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
    [PubMed]
  20. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
    [Crossref]
  21. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
    [Crossref]
  22. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
    [Crossref]
  23. F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
    [Crossref]
  24. F. A. Sadjadi and C. L. Chun, “Automatic detection of small objects from infrared state-of-polarization,” Opt. Lett. 28, 531–533 (2003).
    [Crossref] [PubMed]
  25. T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
    [Crossref] [PubMed]
  26. J. Wauters, “Doped silicon creates new bolometer material,” Laser Focus World 33, 145–149 (1997).
  27. M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
    [Crossref]
  28. H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
    [Crossref]
  29. L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
    [Crossref]
  30. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).
  31. S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
    [Crossref]
  32. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
    [Crossref] [PubMed]
  33. H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

2006 (6)

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phy. 69, 301–326 (2006).
[Crossref]

2005 (4)

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
[Crossref] [PubMed]

2004 (2)

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

2003 (4)

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 11, 2549–2554 (2003).

F. A. Sadjadi and C. L. Chun, “Automatic detection of small objects from infrared state-of-polarization,” Opt. Lett. 28, 531–533 (2003).
[Crossref] [PubMed]

2002 (1)

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47, 3667–3677 (2002).
[Crossref] [PubMed]

2001 (4)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
[Crossref]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 86, 3996 (2000).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1999 (3)

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

1998 (1)

T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
[Crossref] [PubMed]

1997 (1)

J. Wauters, “Doped silicon creates new bolometer material,” Laser Focus World 33, 145–149 (1997).

Almasri, M.

M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
[Crossref]

Amato, G.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Babikov, D.

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Baorino, L.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Barber, J.

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Bastiaans, G. J.

Benedetto, G.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Butler, D. P.

M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
[Crossref]

Butler, N.

T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
[Crossref] [PubMed]

Celik-Butler, Z.

M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Chen, H-T

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Chen, Y.

Chun, C. L.

Cremer, F.

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Crowe, T. W.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Dittmar, A.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Dolling, G.

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Federici, J.

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Funk, D. J.

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Globus, T.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

Gossard, A. C.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Hangyo, T.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Hesler, J. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Hooks, D. E.

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Hu, Q.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Jong, A. N.

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Jong, W.

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Ju, S. B.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kim, S. G.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Lacquaniti, V.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

Lee, A. W. M.

Lee, H. K.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

Lee, Mark

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Lee, W.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Linden, S.

Liu, H.-B.

Lysenko, V.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

Monticone, E.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Morikawa, O.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Murphy, R.

T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
[Crossref] [PubMed]

Nagashima, T.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Nishizawa, S.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Oka, A.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Padilla, W. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 86, 3996 (2000).

Rossi, A. M.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

Sadjadi, F. A.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

Sakai, K.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Schwering, P. B.W.

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Scutte, K.

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

Spagnolo, R.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Steni, R.

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Takeda, M. W.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Tanaka, K.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Taylor, A.J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

Tominaga, K.

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Wauters, J.

J. Wauters, “Doped silicon creates new bolometer material,” Laser Focus World 33, 145–149 (1997).

Wegener, M.

White, T.

T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
[Crossref] [PubMed]

Williams, G. P.

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phy. 69, 301–326 (2006).
[Crossref]

Wong, Y. J.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Woolard, D. L.

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Yoon, E.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Yoon, J. B.

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zhang, X.-C.

Zide, J. M. O.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

Appl. Phys. Lett. (1)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Appl. Phys. Lett. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. Lett. B 68, 1085–1094 (1999).

IEEE Eng. Med. Biol. Mag. (1)

T. White, N. Butler, and R. Murphy, “An uncooled IR sensor with a digital focal plane array,” IEEE Eng. Med. Biol. Mag. 17, 60–65 (1998).
[Crossref] [PubMed]

IEEE Trans. Electron. Devices (1)

H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Wong, W. Lee, and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron. Devices 46, 1489–1491 (1999).
[Crossref]

J. Microelectromechanical Syst. (1)

M. Almasri, D. P. Butler, and Z. Celik-Butler, “Self-supporting uncooled infrared bolometers with low thermal mass,” J. Microelectromechanical Syst. 10, 469–476 (2001).
[Crossref]

J. Phys. Chem. A (1)

J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109, 3501–3505 (2005).
[Crossref]

Laser Focus World (1)

J. Wauters, “Doped silicon creates new bolometer material,” Laser Focus World 33, 145–149 (1997).

Microelectron. J. (1)

L. Baorino, E. Monticone, G. Amato, R. Steni, G. Benedetto, A. M. Rossi, V. Lacquaniti, R. Spagnolo, V. Lysenko, and A. Dittmar, “Design and fabrication of metal bolometers on high porosity silicon layers,” Microelectron. J. 30, 1149–1154 (1999).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nature (1)

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active Metamaterial Devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Philosophical Transactions of the Royal Society of London A (1)

T. W. Crowe, T. Globus, D. L. Woolard, and J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philosophical Transactions of the Royal Society of London A 362, 265–377 (2004).

Phys. Med. Biol. (1)

X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol. 47, 3667–3677 (2002).
[Crossref] [PubMed]

Phys. Rev. B (2)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2001).
[Crossref]

Phys. Rev. Lett. (3)

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permitivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 86, 3996 (2000).

Proc. SPIE (3)

F. Oliveira, R. Barat, B. Schulkin, F. Huang, J. Federici, and D. Gary, “Neural network analysis of terahertz spectra of explosives and bio-agents,” Proc. SPIE 5070, 60–70 (2003).
[Crossref]

D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

F. Cremer, P. B.W. Schwering, W. Jong, K. Scutte, and A. N. Jong, “Infrared polarization measurements of targets and background marine environment,” Proc. SPIE 4370, 169–179 (2001).
[Crossref]

Rep. Prog. Phy. (1)

G. P. Williams, “Filling the THz gap - high power sources and applications,” Rep. Prog. Phy. 69, 301–326 (2006).
[Crossref]

Science (4)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons, and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[Crossref]

Terahertz Optoelectronics (1)

S. Nishizawa, K. Sakai, T. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, “Terahertz time-domain spectroscopy,” Terahertz Optoelectronics 97, 203–269 (2005).
[Crossref]

Other (2)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A.J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental Demonstration of Frequency Agile Terahertz Metamaterials,” Nat. Photonics, in press.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A Perfect Metamaterial Absorber,” Submitted to Phys. Rev. Lett.
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(color) Schematics of the THz absorber: (a) electric resonator on the top of a polyimide spacer; (b) cut wire on GaAs wafer; (c) single unit cell showing the direction of propagation of incident EM wave. The unit cell is 34 µm wide and 50 µm in length. The line width and gap of the electric resonator is 3 µm. The side length of the square electric resonator is 30 µm, the side length of the cut wire is 48 µm, and the width of the cut wire is 4 µm. Thickness of the electric resonant ring and cut wire is 200 nm. The spacer of polyimide is 8 µm thick, and the GaAs wafer is 500 µm thick.

Fig. 2.
Fig. 2.

(color) Simulation results for the electric resonator ring and cut wire. (a) and (b) show the x-component of the electric field of the electric resonator ring and cut wire at resonance, respectively; (c) and (d) show the anti-parallel currents driven by magnetic coupling. (e) The absorptivity (blue) yields a value of 98% at 1.12 THz. Reflection (green) and Transmission (red) are both at normal incidence.

Fig. 3.
Fig. 3.

(color) Left panel describes the development process for fabrication of the terahertz absorber. Right panel shows photographs of the split wire (top) electric ring resonator and split wire (middle) and an individual unit cell of the terahertz absorber (bottom).

Fig. 4.
Fig. 4.

(color) Experimental results showing the transmission intensity and reflection intensity. The blue lines are experiment and the red line the simulations. The reflectance measurement was performed at 30° off-normal. The transmission measurement was performed at normal incidence.

Fig. 5.
Fig. 5.

(color) Experimental results showing absorptivity. Experimental results are in blue and simulation is in red. The experimental absorptivity reaches a maximum value of 70% at 1.3 THz. The simulated absorptivity reaches a value of 68% at the same frequency.

Fig. 6.
Fig. 6.

(color) Simulation results comparing absorptivity for both polarizations. When the electric field is polarized parallel to the center stalk of the ERR (red) absorption reaches 70%. In the opposite polarization, the absorption only reaches 27%

Metrics