Abstract

Nanocrystals (50–250 nm) of a Palladium complex within a polyisobutylmethacrylate matrix were prepared by a phase separation method. In these dispersions, a light-induced birefringence with Δn ~10-3 was induced, without the application of an electric field. This effect was related to the photoconducting properties of the dispersion. Evidence for charge photogeneration without any applied field was obtained. The photorefractive behaviour of the material confirmed that the nanocrystals reorientation is a consequence of photoconducting properties. A light-generated electric field E ~3 V/µm was estimated. These results illustrate the potential of materials with a nano-crystalline dispersion morphology as light-responsive media.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Giacalone and N. Martìn, "Fullerene Polymers: Synthesis and Properties," Chem. Rev. 106, 5136-5190 (2006).
    [CrossRef] [PubMed]
  2. H. Akiyama and N. Tamaoki, "Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units," Macromolecules 40, 5129-5132 (2007).
    [CrossRef]
  3. H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
    [CrossRef] [PubMed]
  4. A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
    [CrossRef] [PubMed]
  5. W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
    [CrossRef]
  6. G. Boudebs and C. B. de Araùjo, "Characterization of Light-Induced Modification of the Nonlinear Refractive Index Using a One-Laser-Shot Nonlinear Imaging Technique," Appl. Phys. Lett. 85, 3740-3742 (2004).
    [CrossRef]
  7. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).
  8. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford UP, 1996).
  9. M. Duelli, G. Montemezzani, M. Zgonik, and P. Günter, "Photorefractive Memories for Optical Processing," in Photorefractive Materials and their Applications 3: Applications, P. Günter, J. P. Huignard, eds. (Springer, 2007), pp. 77-134.
  10. P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
    [CrossRef]
  11. O. Ostroverkhova and W. E. Moerner, "Organic Photorefractives: Mechanisms, Materials, and Applications," Chem. Rev. 104, 3267-3314 (2004).
    [CrossRef] [PubMed]
  12. P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
    [CrossRef] [PubMed]
  13. M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
    [CrossRef]
  14. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford UP,1993).
  15. G. P. Wiederrecht, "Photorefractive Liquid Crystals," Annu. Rev. Mater. Res. 31, 139-169 (2001).
    [CrossRef]
  16. G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
    [CrossRef]
  17. I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
    [CrossRef] [PubMed]
  18. I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
    [CrossRef]
  19. R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
    [CrossRef]
  20. T. K. Gaylord and M. G. Moharam, "Thin and thick gratings: terminology clarification" Appl. Opt. 20, 3271-3273 (1981).
    [CrossRef] [PubMed]
  21. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric Measurements of Poling Birefringence, the Pockels Effect, and the Kerr Effect in High-Performance Photorefractive Polymer Composites," Appl. Opt. 35, 2346-2354 (1996).
    [CrossRef]
  22. Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
    [CrossRef]
  23. W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
    [CrossRef]

2007

H. Akiyama and N. Tamaoki, "Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units," Macromolecules 40, 5129-5132 (2007).
[CrossRef]

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
[CrossRef] [PubMed]

W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
[CrossRef]

2006

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

F. Giacalone and N. Martìn, "Fullerene Polymers: Synthesis and Properties," Chem. Rev. 106, 5136-5190 (2006).
[CrossRef] [PubMed]

2004

G. Boudebs and C. B. de Araùjo, "Characterization of Light-Induced Modification of the Nonlinear Refractive Index Using a One-Laser-Shot Nonlinear Imaging Technique," Appl. Phys. Lett. 85, 3740-3742 (2004).
[CrossRef]

P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, "Organic Photorefractives: Mechanisms, Materials, and Applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

2003

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

2002

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

2001

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

G. P. Wiederrecht, "Photorefractive Liquid Crystals," Annu. Rev. Mater. Res. 31, 139-169 (2001).
[CrossRef]

2000

G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
[CrossRef]

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

1997

Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
[CrossRef]

1996

1981

Aiello, I.

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

Akiyama, H.

H. Akiyama and N. Tamaoki, "Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units," Macromolecules 40, 5129-5132 (2007).
[CrossRef]

Allaart, K.

W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
[CrossRef]

Antipov, O. L.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Asaoka, S.

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Boudebs, G.

G. Boudebs and C. B. de Araùjo, "Characterization of Light-Induced Modification of the Nonlinear Refractive Index Using a One-Laser-Shot Nonlinear Imaging Technique," Appl. Phys. Lett. 85, 3740-3742 (2004).
[CrossRef]

Bruno, A.

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

Cao, S. K.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

Carlsson, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Cheben, P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Chen, Z. J.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

Cipparrone, G.

G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
[CrossRef]

Dattilo, D.

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

de Araùjo, C. B.

G. Boudebs and C. B. de Araùjo, "Characterization of Light-Induced Modification of the Nonlinear Refractive Index Using a One-Laser-Shot Nonlinear Imaging Technique," Appl. Phys. Lett. 85, 3740-3742 (2004).
[CrossRef]

Dean, P.

P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

del Monte, F.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Dickinson, M. R.

P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

Domrachev, G. A.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Douglas, W. E.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Gaylord, T. K.

Gharavi, A. R.

Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
[CrossRef]

Ghedini, M.

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

Giacalone, F.

F. Giacalone and N. Martìn, "Fullerene Polymers: Synthesis and Properties," Chem. Rev. 106, 5136-5190 (2006).
[CrossRef] [PubMed]

Golemme, A.

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

Gong, Q. H.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

Griesbeck, A. G.

A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
[CrossRef] [PubMed]

Grover, C. P.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Guy, D. M. H.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Hoffmann, N.

A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
[CrossRef] [PubMed]

Huang, M. M.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

Ikeda, T.

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Iyoda, T.

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Klapshina, L. G.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Kuzhelev, A. S.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Lenstra, D.

W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
[CrossRef]

Lopatina, T. I.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Mackenzie, J. D.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Martìn, N.

F. Giacalone and N. Martìn, "Fullerene Polymers: Synthesis and Properties," Chem. Rev. 106, 5136-5190 (2006).
[CrossRef] [PubMed]

Mazzulla, A.

G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, "Organic Photorefractives: Mechanisms, Materials, and Applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

Moharam, M. G.

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, "Organic Photorefractives: Mechanisms, Materials, and Applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

Pagliusi, P.

G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
[CrossRef]

Peng, Z.

Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
[CrossRef]

Sandalphon,

Semenov, V. V.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Shi, J.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

Shishido, A.

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Tamaoki, N.

H. Akiyama and N. Tamaoki, "Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units," Macromolecules 40, 5129-5132 (2007).
[CrossRef]

Termine, R.

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

Wang, W.

W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
[CrossRef]

Warzecha, K.D.

A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
[CrossRef] [PubMed]

West, D. P.

P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, "Photorefractive Liquid Crystals," Annu. Rev. Mater. Res. 31, 139-169 (2001).
[CrossRef]

Worsfold, D. J.

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Yu, H.

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Yu, L.

Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
[CrossRef]

Yurasova, I. V.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Acc. Chem. Res.

A. G. Griesbeck, N. Hoffmann, and K.D. Warzecha, "Photoinduced-Electron-Transfer Chemistry: from Studies on PET Processes to Applications in Natural Product Synthesis," Acc. Chem. Res. 40, 128-140 (2007).
[CrossRef] [PubMed]

Adv. Mater.

I. Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, and A. Golemme, "Cyclopalladated Complexes as Photorefractive Materials with High Refractive Index Modulation," Adv. Mater. 14, 1233-1236 (2002).
[CrossRef]

R. Termine, I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Photorefractive Performance Enhancement in Polymer Dispersions of Nanosized Crystalline Domains," Adv. Mater. 15, 723-726 (2003).
[CrossRef]

Annu. Rev. Mater. Res.

G. P. Wiederrecht, "Photorefractive Liquid Crystals," Annu. Rev. Mater. Res. 31, 139-169 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Dean, M. R. Dickinson, and D. P. West, "Full-Field Coherence-Gated Holographic Imaging through Scattering Media Using a Photorefractive Polymer Composite Device," Appl. Phys. Lett. 85, 363-365 (2004).
[CrossRef]

G. Boudebs and C. B. de Araùjo, "Characterization of Light-Induced Modification of the Nonlinear Refractive Index Using a One-Laser-Shot Nonlinear Imaging Technique," Appl. Phys. Lett. 85, 3740-3742 (2004).
[CrossRef]

Chem. Rev.

F. Giacalone and N. Martìn, "Fullerene Polymers: Synthesis and Properties," Chem. Rev. 106, 5136-5190 (2006).
[CrossRef] [PubMed]

O. Ostroverkhova and W. E. Moerner, "Organic Photorefractives: Mechanisms, Materials, and Applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

Chin. Phys. Lett.

M. M. Huang, Z. J. Chen, J. Shi, S. K. Cao, and Q. H. Gong, "All-Optical Photorefractive Effect in Carbazole-Based Azo-Side Group Polymer," Chin. Phys. Lett. 23, 2468-2471 (2006).
[CrossRef]

J. Am. Chem. Soc.

Z. Peng, A. R. Gharavi, and L. Yu, " Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer," J. Am. Chem. Soc. 119, 4622-4632 (1997).
[CrossRef]

I. Aiello, D. Dattilo, M. Ghedini, and A. Golemme, "Cyclometalated Complexes: A New Class of Highly Efficient Photorefractive Materials," J. Am. Chem. Soc. 123, 5598-5599 (2001).
[CrossRef] [PubMed]

Macromolecules

H. Akiyama and N. Tamaoki, "Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units," Macromolecules 40, 5129-5132 (2007).
[CrossRef]

Nature

P. Cheben, F. del Monte, D. J. Worsfold, D. J. Carlsson, C. P. Grover, and J. D. Mackenzie, "A Photorefractive Organically Modified Silica Glass with High Optical Gain," Nature 408, 64-67 (2000).
[CrossRef] [PubMed]

Opt. Commun.

W. Wang, K. Allaart, and D. Lenstra, "Photo-Induced Birefringence in Semiconductors Compared with Optical Fibers," Opt. Commun. 278, 395-401 (2007).
[CrossRef]

G. Cipparrone, A. Mazzulla, and P. Pagliusi, "Spatial Periodicity of Photorefractive Orientational Gratings in Dye-Doped Polymer-Liquid Crystal Composite," Opt. Commun. 185, 171-175 (2000).
[CrossRef]

Phys. Chem. Chem. Phys.

W. E. Douglas, A. S. Kuzhelev, I. V. Yurasova, O. L. Antipov, L. G. Klapshina, V. V. Semenov, G. A. Domrachev, T. I. Lopatina, and D. M. H. Guy, "Photorefractive properties of new polymer composites incorporating poly[ethynediyl-arylene-ethynediyl-silylene]s," Phys. Chem. Chem. Phys. 4, 109-114 (2002).
[CrossRef]

Small

H. Yu, S. Asaoka, A. Shishido, T. Iyoda, and T. Ikeda, "Photoinduced Nanoscale Cooperative Motion in a Well-Defined Triblock Copolymer," Small 3, 768-771 (2007).
[CrossRef] [PubMed]

Other

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford UP, 1996).

M. Duelli, G. Montemezzani, M. Zgonik, and P. Günter, "Photorefractive Memories for Optical Processing," in Photorefractive Materials and their Applications 3: Applications, P. Günter, J. P. Huignard, eds. (Springer, 2007), pp. 77-134.

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford UP,1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Absorption spectrum in solution and chemical structure of the cyclopalladated complex AZPON.

Fig. 2.
Fig. 2.

The experimental set-up used to measure light-induced birefringence in the nanocrystalline dispersions of AZPON in a polyisobuthylmethacrylate matrix.

Fig. 3.
Fig. 3.

Time dependence of the induced birefringence in a 50 µm thick sample of AZPON:PIBMA=3:2. The birefringence was obtained using Eq. (1).

Fig. 4.
Fig. 4.

Optical microscope picture of a 50 µm thick sample of AZPON:PIBMA=3:2 previously exposed to the interference pattern generated by two beams at λ=633 nm with a periodicity Λ=10 µm. The sample is placed between two crossed polarizers, whose orientations are indicated by the arrows.

Fig. 5.
Fig. 5.

Schematic illustration (upper part) of the experiment used to measure zero-field photo-induced charge generation in a 50 µm thick sample of AZPON:PIBMA=3:2. Samples are first illuminated for a time t1. After a time t2 from the turn-off of the light, an electric field E is applied to measure the current. In the lower part, the transient current is shown for samples (a) kept in the dark (i.e. for t1=0) and (b) pre-illuminated. In order to illustrate reproducibility, two examples of measurements are shown for both dark and pre-illuminated samples, each one translated on the time-scale for clarity. The inset is an enlargement of the peak currents.

Fig. 6.
Fig. 6.

(a) Applied electric field dependence of the phase shift between interference fringes and refractive index modulation in 50 µm thick samples of AZPON:PIBMA=3:2. The two different symbols indicate fields of different polarity. (b) Typical variation of the light intensities of the two beams during a displacement of an exposed sample along the grating wavevector. The displacement started at a time t=0.3 s. No electric field was applied.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I max sin 2 ( π d Δ n λ ψ SB 2 ) ,
Γ = 4 π λ δ n sin ϕ .
F E = 1 2 ε 0 Δ ε E 2 cos 2 θ ,
Γ E = 1 2 ε 0 Δ ε E 2 sin ( 2 θ ) .
Γ V = - γ l d θ dt ,
tg θ = tg θ 0 exp [ ε 0 Δ ε E 2 V γ lS t ] ,
τ = γ lS ε 0 Δ ε E 2 V .

Metrics