Abstract

We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
    [CrossRef]
  2. R. Minasian, "Photonic Signal Processing of Microwave Signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
    [CrossRef]
  3. N. You and R. A. Minasian, "A novel tunable microwave optical notch filter," IEEE Trans. Microwave Theory Tech. 49,2002-2005 (2001).
    [CrossRef]
  4. J. Capmany, J. Mora, B. Ortega, and D. Pastor, "Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients," Opt. Express 5, 1412-1417 (2005).
    [CrossRef]
  5. B. Vidal, J. L. Corral, and J. Martí, "All-optical WDM multi-tap microwave filter with flat bandpass," Opt. Express 14, 581-586 (2006).
    [CrossRef] [PubMed]
  6. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of Incoherent Microwave Photonic filters with complex coefficients," IEEE Photon. Tech. Lett. 18, 1744-1746 (2006).
    [CrossRef]
  7. E. H. W. Chan and R. A. Minasian, "Photonic RF phase shifter and tuneable photonic RF notch filter", IEEE J. Lightwave Technol. 24, 2676-2682 (2006).
    [CrossRef]
  8. M. Sagues, A. Loayssa, and J. Capmany, "Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering," IEEE Photon. Tech. Lett. 19, 1194-1196 (2007).
    [CrossRef]
  9. M. Sagues, A. Loayssa, J. Capmany, D. Benito, S. Sales, and R. Garcia Olcina, "Tunable complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow-band optical filtering," in Proc. Optical Fiber Communications Conference (OFC’2007) paper OWU5.
  10. A. Loayssa and F.J. Lahoz, "Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single sideband modulation," IEEE Photon. Tech. Lett. 18, 208-210 (2006).
    [CrossRef]
  11. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express 15, 371-381 (2007).
    [CrossRef] [PubMed]
  12. A. Loayssa, R. Hernandez, D. Benito, and S. Galech, "Characterization of stimulated Brillouin scattering spectra by use of optical single sideband modulation," Opt. Lett. 29, 638-640 (2004).
    [CrossRef] [PubMed]
  13. G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, 74-75 (1997).
    [CrossRef]
  14. S. Xiao and A. Weiner, "Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA)," IEEE Photon. Techn. Lett. 17, 1522-1524 (2005).
    [CrossRef]
  15. T. Fujiwara and K. Kikushima, "140 Carrier, 20GHz SCM signal transmission across 200km SMF by two-step sideband suppression scheme in optical SSB modulation," in Proc. Optical Fiber Communications Conference (OFC’2007) paper OME2 (2007).
  16. M. Attygalle, C. Lim, and A. Nirmalathas, "Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation," IEEE J. Lightwave Technol. 24, 1703-1709 (2006).
    [CrossRef]

2007 (2)

M. Sagues, A. Loayssa, and J. Capmany, "Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering," IEEE Photon. Tech. Lett. 19, 1194-1196 (2007).
[CrossRef]

N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, "Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating," Opt. Express 15, 371-381 (2007).
[CrossRef] [PubMed]

2006 (6)

M. Attygalle, C. Lim, and A. Nirmalathas, "Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation," IEEE J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

B. Vidal, J. L. Corral, and J. Martí, "All-optical WDM multi-tap microwave filter with flat bandpass," Opt. Express 14, 581-586 (2006).
[CrossRef] [PubMed]

A. Loayssa and F.J. Lahoz, "Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single sideband modulation," IEEE Photon. Tech. Lett. 18, 208-210 (2006).
[CrossRef]

R. Minasian, "Photonic Signal Processing of Microwave Signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of Incoherent Microwave Photonic filters with complex coefficients," IEEE Photon. Tech. Lett. 18, 1744-1746 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, "Photonic RF phase shifter and tuneable photonic RF notch filter", IEEE J. Lightwave Technol. 24, 2676-2682 (2006).
[CrossRef]

2005 (3)

J. Capmany, J. Mora, B. Ortega, and D. Pastor, "Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients," Opt. Express 5, 1412-1417 (2005).
[CrossRef]

S. Xiao and A. Weiner, "Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA)," IEEE Photon. Techn. Lett. 17, 1522-1524 (2005).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
[CrossRef]

2004 (1)

2001 (1)

N. You and R. A. Minasian, "A novel tunable microwave optical notch filter," IEEE Trans. Microwave Theory Tech. 49,2002-2005 (2001).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

Electron. Lett. (1)

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

IEEE J. Lightwave Technol. (2)

E. H. W. Chan and R. A. Minasian, "Photonic RF phase shifter and tuneable photonic RF notch filter", IEEE J. Lightwave Technol. 24, 2676-2682 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation," IEEE J. Lightwave Technol. 24, 1703-1709 (2006).
[CrossRef]

IEEE Photon. Tech. Lett. (3)

M. Sagues, A. Loayssa, and J. Capmany, "Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering," IEEE Photon. Tech. Lett. 19, 1194-1196 (2007).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, "Demonstration of Incoherent Microwave Photonic filters with complex coefficients," IEEE Photon. Tech. Lett. 18, 1744-1746 (2006).
[CrossRef]

A. Loayssa and F.J. Lahoz, "Broadband RF photonic phase shifter based on stimulated Brillouin scattering and single sideband modulation," IEEE Photon. Tech. Lett. 18, 208-210 (2006).
[CrossRef]

IEEE Photon. Techn. Lett. (1)

S. Xiao and A. Weiner, "Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA)," IEEE Photon. Techn. Lett. 17, 1522-1524 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

R. Minasian, "Photonic Signal Processing of Microwave Signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

N. You and R. A. Minasian, "A novel tunable microwave optical notch filter," IEEE Trans. Microwave Theory Tech. 49,2002-2005 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (2)

M. Sagues, A. Loayssa, J. Capmany, D. Benito, S. Sales, and R. Garcia Olcina, "Tunable complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow-band optical filtering," in Proc. Optical Fiber Communications Conference (OFC’2007) paper OWU5.

T. Fujiwara and K. Kikushima, "140 Carrier, 20GHz SCM signal transmission across 200km SMF by two-step sideband suppression scheme in optical SSB modulation," in Proc. Optical Fiber Communications Conference (OFC’2007) paper OME2 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Fundamentals of the narrow-band optical processing of the OSSB modulated signal using a commercial PS-FBG: Modulation sidebands fall in a linear slope region of the phase spectrum of the PS-FBG, while the optical carrier acquires a differential phase-shift in the notch region.

Fig. 2.
Fig. 2.

Representation of the frequency response of the RF photonic phase shifter considering ideal OSSB modulation. (a) Full range, (b) 10 to 30 GHz detail.

Fig. 3.
Fig. 3.

Experimental setup for the multi tap complex coefficient filter.

Fig. 4.
Fig. 4.

Reflective amplitude spectral response of the cascade of PS-FBGs.

Fig. 5.
Fig. 5.

Spectral characterization of the PS-FBGs.

Fig. 6.
Fig. 6.

Measured electrical delay for each PS-FBG (symbols).

Fig. 7.
Fig. 7.

Frequency response of the RF photonic phase-shifter.

Fig. 8.
Fig. 8.

Measured (a) amplitude and (b) RF phase-shift for one of the PS-FBGs for different wavelengths of a laser source.

Fig. 9.
Fig. 9.

Frequency response of the four-tap complex coefficient filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = E out · E out A cos ( 2 π f R F t θ )
H ( e j ω T ) = n = 0 N 1 a n e j ω T n
H S ( e j ω T ) = H ( e j ( ω ω 0 ) T ) = n = 0 N 1 a n e j ω 0 T n e j ω T n

Metrics