Abstract

We propose new all-optical logic gates containing a local nonlinear Mach-Zehnder interferometer waveguide structure. The light-induced index changes in the Mach-Zehnder waveguide structure make the output signal beam propagate through different nonlinear output waveguides. Based on the output signal beam propagating property, various all-optical logic gates by using the local nonlinear Mach-Zehnder waveguide interferometer structure with two straight control waveguides have been proposed to perform XOR/NXOR, AND/NAND, and OR/NOR logic functions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).
  2. Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).
  3. Y. D. Wu, M. H. Chen, and H. J. Tasi, “Novel All-optical Switching Device with Localized Nonlinearity,” Optical Society of America, Optics in Computing Devices.297–299 (2002).
  4. Y. D. Wu, “Nonlinear All-Optical Switching Device by Using the Spatial Soliton Collision,” Fiber and Integrated Optics. 23, 387–404 (2004).
    [CrossRef]
  5. F. Garzia and M. Bertolotti, “All-optical security coded key,” Optical Quantum Electronics. 33, 527–540 (2001).
    [CrossRef]
  6. Y. H. Pramono and Endarko, “Nonlinear Waveguides for Optical Logic and Computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
    [CrossRef]
  7. Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).
  8. Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
    [CrossRef] [PubMed]
  9. C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
    [CrossRef]
  10. L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
    [CrossRef]
  11. S. She and S. Zhang, “Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding,” Opt. Comm. 161, 141–148 (1999).
    [CrossRef]
  12. Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).
  13. Y. D. Wu and M. H. Chen, “Analyzing multiplayer optical waveguides with nonlinear cladding and substrates,” J. Opt. Soc. Am. B. 19, 1737–1745 (2002).
    [CrossRef]
  14. Y. D. Wu and M. H. Chen, “The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation,” J. Nat. Kao. Uni. of App. Sci. 32, 7982–7996 (2002).
  15. A. D. Boardman and P. Egan, “Optically nonlinear waves in thin films,” IEEE J. Quantum Electron. 22, 319–324 (1986).
    [CrossRef]
  16. H. Murata, M. Izutsu, and T. Sueta, “Optical bistability and all-optical switching in novel waveguide functions with localized optical nonlinearity,” J. Lightwave Technol. 16, 833–840 (1998).
    [CrossRef]
  17. Y. D. Wu and Y. C. Jang, “Analyzing and Numerical study of Seven-Layer Optical Waveguide with Localized Nonlinear Central guiding Film,” Proceedings Electrical and Information Engineering Symposium.24–28 (2003).
  18. Y. D. Wu, “Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film,” IEEE J. Quantum. Electron. 40, 529–540 (2004).
    [CrossRef]
  19. C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
    [CrossRef] [PubMed]
  20. X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).
  21. H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).
  22. L. Pavelescu, “Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International. 1, 201–204 (2001).
    [CrossRef]
  23. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
    [CrossRef]
  24. A. M. Kan’an and P. Likam wa, “Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer,” J. Opt. Soc. Am. B. 14, 3217–3223 (1997).
    [CrossRef]
  25. Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
    [CrossRef]
  26. Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics. 26, 1335–1339 (1994).
    [CrossRef]
  27. C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).
  28. H. Vach, G. I. Stegeman, C. T. Seaton, and I. C. Khoo, “Experimental observation of nonlinear guided waves,” Opt. Lett. 9, 238–240 (1984).
    [CrossRef] [PubMed]

2007 (2)

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

2004 (2)

Y. D. Wu, “Nonlinear All-Optical Switching Device by Using the Spatial Soliton Collision,” Fiber and Integrated Optics. 23, 387–404 (2004).
[CrossRef]

Y. D. Wu, “Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film,” IEEE J. Quantum. Electron. 40, 529–540 (2004).
[CrossRef]

2003 (1)

Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

2002 (3)

Y. D. Wu and M. H. Chen, “Analyzing multiplayer optical waveguides with nonlinear cladding and substrates,” J. Opt. Soc. Am. B. 19, 1737–1745 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, “The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation,” J. Nat. Kao. Uni. of App. Sci. 32, 7982–7996 (2002).

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

2001 (7)

Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).

L. Pavelescu, “Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International. 1, 201–204 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).

F. Garzia and M. Bertolotti, “All-optical security coded key,” Optical Quantum Electronics. 33, 527–540 (2001).
[CrossRef]

Y. H. Pramono and Endarko, “Nonlinear Waveguides for Optical Logic and Computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

2000 (1)

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

1999 (1)

S. She and S. Zhang, “Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding,” Opt. Comm. 161, 141–148 (1999).
[CrossRef]

1998 (1)

1997 (1)

A. M. Kan’an and P. Likam wa, “Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer,” J. Opt. Soc. Am. B. 14, 3217–3223 (1997).
[CrossRef]

1994 (1)

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics. 26, 1335–1339 (1994).
[CrossRef]

1988 (1)

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

1986 (1)

A. D. Boardman and P. Egan, “Optically nonlinear waves in thin films,” IEEE J. Quantum Electron. 22, 319–324 (1986).
[CrossRef]

1985 (2)

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

1984 (1)

Bertolotti, M.

F. Garzia and M. Bertolotti, “All-optical security coded key,” Optical Quantum Electronics. 33, 527–540 (2001).
[CrossRef]

Boardman, A. D.

A. D. Boardman and P. Egan, “Optically nonlinear waves in thin films,” IEEE J. Quantum Electron. 22, 319–324 (1986).
[CrossRef]

Bryce, A.C.

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Chang, C. F.

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Chen, M. H.

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

Y. D. Wu and M. H. Chen, “The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation,” J. Nat. Kao. Uni. of App. Sci. 32, 7982–7996 (2002).

Y. D. Wu and M. H. Chen, “Analyzing multiplayer optical waveguides with nonlinear cladding and substrates,” J. Opt. Soc. Am. B. 19, 1737–1745 (2002).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).

Y. D. Wu, M. H. Chen, and H. J. Tasi, “Novel All-optical Switching Device with Localized Nonlinearity,” Optical Society of America, Optics in Computing Devices.297–299 (2002).

Chen, S. Y.

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Chilwell, J. T.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

Chu, C. H.

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).

Chung, Y.

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics. 26, 1335–1339 (1994).
[CrossRef]

Dagli, N.

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics. 26, 1335–1339 (1994).
[CrossRef]

Egan, P.

A. D. Boardman and P. Egan, “Optically nonlinear waves in thin films,” IEEE J. Quantum Electron. 22, 319–324 (1986).
[CrossRef]

Ehlers, H.

H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).

Endarko,

Y. H. Pramono and Endarko, “Nonlinear Waveguides for Optical Logic and Computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Fischer, U.H.P.

H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).

Garzia, F.

F. Garzia and M. Bertolotti, “All-optical security coded key,” Optical Quantum Electronics. 33, 527–540 (2001).
[CrossRef]

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

Izutsu, M.

Jang, Y. C.

Y. D. Wu and Y. C. Jang, “Analyzing and Numerical study of Seven-Layer Optical Waveguide with Localized Nonlinear Central guiding Film,” Proceedings Electrical and Information Engineering Symposium.24–28 (2003).

Kan’an, A. M.

A. M. Kan’an and P. Likam wa, “Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer,” J. Opt. Soc. Am. B. 14, 3217–3223 (1997).
[CrossRef]

Ke, M.L.

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Khoo, I. C.

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

Kuo, C. W.

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Langbein, U.

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

Lederer, F.

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

Leine, L.

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

Liu, X. F.

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Mai, X.

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Marsh, J.H.

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Murata, H.

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Pavelescu, L.

L. Pavelescu, “Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International. 1, 201–204 (2001).
[CrossRef]

Pramono, Y. H.

Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Y. H. Pramono and Endarko, “Nonlinear Waveguides for Optical Logic and Computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

Qiu, B.C.

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

Schlak, M.

H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).

Seaton, C. T.

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

H. Vach, G. I. Stegeman, C. T. Seaton, and I. C. Khoo, “Experimental observation of nonlinear guided waves,” Opt. Lett. 9, 238–240 (1984).
[CrossRef] [PubMed]

She, S.

S. She and S. Zhang, “Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding,” Opt. Comm. 161, 141–148 (1999).
[CrossRef]

Shoemaker, R. L.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

Smith, D.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

Steaton, C. T.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

Stegeman, G. I.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

H. Vach, G. I. Stegeman, C. T. Seaton, and I. C. Khoo, “Experimental observation of nonlinear guided waves,” Opt. Lett. 9, 238–240 (1984).
[CrossRef] [PubMed]

Sueta, T.

Tasi, H. J.

Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).

Y. D. Wu, M. H. Chen, and H. J. Tasi, “Novel All-optical Switching Device with Localized Nonlinearity,” Optical Society of America, Optics in Computing Devices.297–299 (2002).

Tasy, R. Z.

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

Vach, H.

Valera, J. D.

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

wa, P. Likam

A. M. Kan’an and P. Likam wa, “Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer,” J. Opt. Soc. Am. B. 14, 3217–3223 (1997).
[CrossRef]

Wacher, C.

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

Whang, M. L.

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

Winful, N. G.

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Wu, Y. D.

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Y. D. Wu, “Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film,” IEEE J. Quantum. Electron. 40, 529–540 (2004).
[CrossRef]

Y. D. Wu, “Nonlinear All-Optical Switching Device by Using the Spatial Soliton Collision,” Fiber and Integrated Optics. 23, 387–404 (2004).
[CrossRef]

Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

Y. D. Wu and M. H. Chen, “Analyzing multiplayer optical waveguides with nonlinear cladding and substrates,” J. Opt. Soc. Am. B. 19, 1737–1745 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, “The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation,” J. Nat. Kao. Uni. of App. Sci. 32, 7982–7996 (2002).

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).

Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).

Y. D. Wu, M. H. Chen, and H. J. Tasi, “Novel All-optical Switching Device with Localized Nonlinearity,” Optical Society of America, Optics in Computing Devices.297–299 (2002).

Y. D. Wu and Y. C. Jang, “Analyzing and Numerical study of Seven-Layer Optical Waveguide with Localized Nonlinear Central guiding Film,” Proceedings Electrical and Information Engineering Symposium.24–28 (2003).

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Zhang, S.

S. She and S. Zhang, “Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding,” Opt. Comm. 161, 141–148 (1999).
[CrossRef]

Fiber and Integrated Optics. (2)

Y. D. Wu, M. H. Chen, and C. H. Chu, “All-Optical Logic Device Using Bent Nonlinear Taperred Y-Junction Waveguide Structure,” Fiber and Integrated Optics. 20, 517–524 (2001).

Y. D. Wu, “Nonlinear All-Optical Switching Device by Using the Spatial Soliton Collision,” Fiber and Integrated Optics. 23, 387–404 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, “Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media,” IEEE J. Quantum Electron. 21, 774–783 (1985).
[CrossRef]

A. D. Boardman and P. Egan, “Optically nonlinear waves in thin films,” IEEE J. Quantum Electron. 22, 319–324 (1986).
[CrossRef]

IEEE J. Quantum. Electron. (1)

Y. D. Wu, “Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film,” IEEE J. Quantum. Electron. 40, 529–540 (2004).
[CrossRef]

IEEE Journal of Quantum Electronics. (2)

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE Journal of Quantum Electronics. 38, 37–46 (2002).
[CrossRef]

Y. Chung and N. Dagli, “As assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics. 26, 1335–1339 (1994).
[CrossRef]

IEICE Trans. Electron. (1)

Y. H. Pramono, M. Geshiro, T. Kitamura, and S. Sawa, “Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material,” IEICE Trans. Electron. E83-C, 1755–1762 (2000).

J. Lightwave Technol. (1)

J. Nat. Kao. Uni. of App. Sci. (1)

Y. D. Wu and M. H. Chen, “The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation,” J. Nat. Kao. Uni. of App. Sci. 32, 7982–7996 (2002).

J. Opt. Soc. Am. B. (2)

A. M. Kan’an and P. Likam wa, “Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer,” J. Opt. Soc. Am. B. 14, 3217–3223 (1997).
[CrossRef]

Y. D. Wu and M. H. Chen, “Analyzing multiplayer optical waveguides with nonlinear cladding and substrates,” J. Opt. Soc. Am. B. 19, 1737–1745 (2002).
[CrossRef]

J. Opt. Soc. Amer. B. (1)

L. Leine, C. Wacher, U. Langbein, and F. Lederer, “Evolution of nonlinear guided optical fields down a dielectric film with nonlinear cladding,” J. Opt. Soc. Amer. B. 5, 547–558 (1988).
[CrossRef]

Journal of Nonlinear Optical Physics & Materials. (2)

Y. H. Pramono and Endarko, “Nonlinear Waveguides for Optical Logic and Computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Y. H. Pramono and Endarko, “Nonlinear waveguides for optical logic and computation,” Journal of Nonlinear Optical Physics & Materials. 10, 209–222 (2001).
[CrossRef]

Opt. Comm. (1)

S. She and S. Zhang, “Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding,” Opt. Comm. 161, 141–148 (1999).
[CrossRef]

Opt. Eng. (1)

C. T. Seaton, X. Mai, G. I. Stegeman, and N. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).

Opt. Lett. (1)

Optical Fiber Communication Conference and Exhibit. (1)

H. Ehlers, M. Schlak, and U.H.P. Fischer, “Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems,” Optical Fiber Communication Conference and Exhibit. 3, WDD66-1~66–3 (2001).

Optical Quantum Electronics. (1)

F. Garzia and M. Bertolotti, “All-optical security coded key,” Optical Quantum Electronics. 33, 527–540 (2001).
[CrossRef]

Optics Express (2)

Y. D. Wu, M. L. Whang, M. H. Chen, and R. Z. Tasy, “All-optical Switch Based on the Local Nonlinear Mach-Zehnder Interferometer,” Optics Express 15, 9883–9892 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-9883
[CrossRef] [PubMed]

C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, “Analyzing multilayer optical waveguide with all nonlinear layers,” Optics Express 15, 2499–2516 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499
[CrossRef] [PubMed]

Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. (1)

Y. D. Wu, M. H. Chen, and R. Z. Tasy, “A new all-optical Switching Device by using the nonlinear Mach-Zehnder interferometer with a control waveguides,” Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics. I, 292 (2003).

Semiconductor Conference, 2001. CAS 2001 Proceedings. International. (1)

L. Pavelescu, “Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International. 1, 201–204 (2001).
[CrossRef]

SPIE Design, Fabrication, and Characterization of Photonic Device II. (1)

Y. D. Wu, M. H. Chen, and H. J. Tasi, “A General Method for Analyzing the Multilayer Optical Waveguide with Nonlinear Cladding and Substrate”, SPIE Design, Fabrication, and Characterization of Photonic Device II. 4594, 323–331 (2001).

Other (3)

Y. D. Wu, M. H. Chen, and H. J. Tasi, “Novel All-optical Switching Device with Localized Nonlinearity,” Optical Society of America, Optics in Computing Devices.297–299 (2002).

X. F. Liu, M.L. Ke, B.C. Qiu, A.C. Bryce, and J.H. Marsh, “Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on. 412–414 (2000).

Y. D. Wu and Y. C. Jang, “Analyzing and Numerical study of Seven-Layer Optical Waveguide with Localized Nonlinear Central guiding Film,” Proceedings Electrical and Information Engineering Symposium.24–28 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The proposed waveguide structures of all-optical logic gates (a) XOR/NXOR gate, (b) AND/NAND gate, (c) OR/NOR gate.

Fig. 2.
Fig. 2.

The structure of multilayer optical waveguides with nonlinear guiding films.

Fig. 3.
Fig. 3.

The XOR/NXOR logic functions with Pc=23.7 W/m and Ps=79 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Fig. 4.
Fig. 4.

The AND/NAND logic functions with Pc=30 W/m and Ps=60 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Fig. 5.
Fig. 5.

The OR/NOR logic functions with Pc=31.2 W/m and Ps=78 W/m (a) A=0, B=0, (b) A=0, B=1, (c) A=1, B=0, (d) A=1, B=1.

Tables (3)

Tables Icon

Table 1. The logic states of the XOR and NXOR gates.

Tables Icon

Table 2. The logic states of AND and NAND gates.

Tables Icon

Table 3. The logic states of OR and NOR gates.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 E yi = n i 2 c 2 2 E yi t 2 ,     i = 1 , 2 , , m
E yi ( x , z , t ) = ε i ( x ) exp [ j ( ωt βk 0 z ) ]
n i 2 = n 0 i 2 + α i ε i ( x ) 2 , i = 2 , 4 , , m 1
ε 1 ( x ) = E s exp ( p 1 x ) in the substrate
ε i ( x ) = E I ( i 2 ) exp { p i [ x ( i 1 2 ) d ( i 3 2 ) w ] } + E I ( i 1 ) { exp p i [ x ( i 1 2 ) d ( i 1 2 ) w ] }
i = 3 , 5 , , m 2 in the interaction layers
ε i ( x ) = b i cn { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β < n i
ε i ( x ) = b i cn { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β > n i
ε m ( x ) = E c exp { p m [ x ( m 1 2 ) d ( m 3 2 ) w ] } in the cladding
p i = k 0 β 2 n i 2 , b i 2 = q i 4 + 2 α i k 0 2 K i q i 2 α i k 0 2 ,
A i = [ ( a i 2 + b i 2 ) ( α i k 0 2 2 ) ] 1 2 , l i = b i 2 ( a i 2 + b i 2 ) ,
b i 2 = Q i 4 + 2 α i k 0 2 K i + Q i 2 α i k 0 2 , A i = [ ( a i 2 + b i 2 ) ( α i k 0 2 2 ) ] 1 2 ,
l i = b i 2 ( a i 2 + b i 2 ) ,

Metrics