Abstract

40Gbit/s all-optical format conversion from the carrier-suppressed return-to-zero (CS-RZ) to the non-return-to-zero (NRZ) is proposed and demonstrated with a temperature-controlled all-fiber delay interferometer (DI) and narrow-band filters. The NRZ signals can be achieved at two different wavelengths simultaneously from the original CS-RZ, with polarization and input power independence. The operation principle is theoretical analyzed with the help of numerical simulation and spectra analysis. Simulated results are well coincidence with experimental results. The format conversion can be achieved with power penalty of 1.6dB

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
    [CrossRef]
  2. S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
    [CrossRef]
  3. P. S. Cho, D. Mahgerefteh, and J. Goldhar, "10 Gb/s RZ to NRZ format conversion using a semiconductor-optical-amplifier/fiber-Bragg-grating wavelength converter," ECOC’98 1, 353-354 (1998).
  4. G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return to zero-return-to zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
    [CrossRef] [PubMed]
  5. S. H. Lee, K. K. Chow and C. Shu, "Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion," Opt. Express 13, 1710-1715 (2005).
    [CrossRef] [PubMed]
  6. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee and C.-S. Park, "Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror," J. Lightwave Technol. 23, 834-841 (2005).
    [CrossRef]
  7. J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, "Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation," Opt. Express 15, 583-588 (2007).
    [CrossRef] [PubMed]
  8. L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
    [CrossRef]
  9. C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12,451-458 (2006).
    [CrossRef]
  10. C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40,620-621 (2004).
    [CrossRef]
  11. W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
    [CrossRef]
  12. J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
    [CrossRef]
  13. Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
    [CrossRef]

2007

Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, "Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation," Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

2006

G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return to zero-return-to zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
[CrossRef] [PubMed]

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12,451-458 (2006).
[CrossRef]

2005

2004

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40,620-621 (2004).
[CrossRef]

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

2003

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

1994

S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
[CrossRef]

Agarwal, A.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Banerjee, S.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Barry, J.

J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
[CrossRef]

Bigo, S.

S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
[CrossRef]

Chang, G. K.

J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
[CrossRef]

Chang, Y.-C.

Chen, M. H.

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

Chow, K. K.

Desruelle, B.

S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
[CrossRef]

Desurvire, E.

S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
[CrossRef]

Dong, Y.

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Grosz, D. F.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Gurevich, A.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Huang, D.

Huang, D. X.

Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
[CrossRef]

Kim, C.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40,620-621 (2004).
[CrossRef]

Kim, Y. J.

Küng, A. P.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Kwok, C. H.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12,451-458 (2006).
[CrossRef]

Lee, C. G.

Lee, H. J.

Lee, S. H.

Li, G.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40,620-621 (2004).
[CrossRef]

Li, W. D.

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

Lin, C.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12,451-458 (2006).
[CrossRef]

Lin, G.-R.

Maywar, D. N.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Park, C. S.

Park, C.-S.

Shu, C.

Su, Y. K.

J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
[CrossRef]

Sun, J.

Sun, Q.

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Wang, D.

Wang, J.

Wood, T. H.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

Xie, S. Z.

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Yu, J. J.

J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
[CrossRef]

Yu, K.-C.

Yu, Y.

Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
[CrossRef]

Zhang, X. L.

Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
[CrossRef]

Chin. Phys. Lett.

Y. Yu, X. L. Zhang and D. X. Huang, "All-optical RZ to NRZ format conversion with a tunable fiber based delay interferometer," Chin. Phys. Lett. 24,706-709 (2007).
[CrossRef]

Electron. Lett.

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion," Electron. Lett. 40,620-621 (2004).
[CrossRef]

S. Bigo, E. Desurvire, and B. Desruelle, "All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror," Electron. Lett. 30,1868-1869 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. H. Kwok and C. Lin, "Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum," IEEE J. Sel. Top. Quantum Electron. 12,451-458 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Küng, D. N. Maywar, A. Gurevich, and T. H. Wood, "Ultra-high-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering," IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

W. D. Li, M. H. Chen, Y. Dong, and S. Z. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Commum.

J. J. Yu, G. K. Chang, J. Barry and Y. K. Su, "40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer," Opt. Commum. 248,419-422 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. S. Cho, D. Mahgerefteh, and J. Goldhar, "10 Gb/s RZ to NRZ format conversion using a semiconductor-optical-amplifier/fiber-Bragg-grating wavelength converter," ECOC’98 1, 353-354 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for the CS-RZ to NRZ format conversions

Fig. 2.
Fig. 2.

Numerical simulations for the spectra and the eye diagrams (PRBS 231-1) of the format conversion. (a)-(c) the spectra, (d)-(f) the eye diagrams.

Fig. 3.
Fig. 3.

Measured CS-RZ to NRZ conversion of (a) fixed bit stream and (b) PRBS (231-1)

Fig. 4.
Fig. 4.

Measured spectra of the format conversion at two different output wavelengths (a), (d) CS-RZ (b), (e) NRZ after the DI (c), (f) NRZ after the filter

Fig. 5.
Fig. 5.

BER measurements for original CS-RZ and the converted NRZ

Fig. 6.
Fig. 6.

The measured output Q factor and the ER versus the input carrier wavelength

Fig. 7.
Fig. 7.

The CS-RZ to NRZ conversion (a) experimental results by only using 0.3nm filter (b) simulated results by only using 0.2nm filter

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 c Δ t

Metrics