Abstract

The problems of the existence, stability, and transversal motion of the discrete dark localized modes in the lattices with saturable nonlinearity are investigated analytically and numerically. The stability analysis shows existence of regions of the parametric space with eigenvalue spectrum branches with non-zeroth real part, which indicates possibility for the propagation of stable on-site and inter-site dark localized modes. The analysis based on the conserved system quantities reveals the existence of regions with a vanishing Peierls-Nabarro barrier which allows transverse motion of the dark breathers. Propagation of the stable on-site and inter-site dark breathers and their free transversal motion are observed numerically.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Instabilities of dark solitons

Yuri S. Kivshar and Wiesław Królikowski
Opt. Lett. 20(14) 1527-1529 (1995)

Mixed-mode spatial solitons in semiconductor waveguides

E. A. Ostrovskaya, N. N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchison
J. Opt. Soc. Am. B 14(4) 880-887 (1997)

Dynamics in the transverse section of the CO2 laser

Hernán G. Solari and R. Gilmore
J. Opt. Soc. Am. B 7(5) 828-841 (1990)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
    [Crossref]
  2. A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
    [Crossref]
  3. E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
    [Crossref] [PubMed]
  4. U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
    [Crossref]
  5. P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
    [Crossref]
  6. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
    [Crossref]
  7. B. Sanchez-Rey and M. Johansson, “Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation,” Phys. Rev. E 71, 036627 (2005).
    [Crossref]
  8. E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
    [Crossref]
  9. E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).
  10. T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
    [Crossref] [PubMed]
  11. Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
    [Crossref] [PubMed]
  12. Wiggins S.Global Bifurcations and Chaos: Analytical Methods (Springer-Verlag New York Inc., 1988).

2006 (2)

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

2005 (1)

B. Sanchez-Rey and M. Johansson, “Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation,” Phys. Rev. E 71, 036627 (2005).
[Crossref]

2004 (2)

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
[Crossref]

2003 (1)

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

2001 (1)

P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
[Crossref]

2000 (1)

E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
[Crossref] [PubMed]

1999 (1)

U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
[Crossref]

1998 (1)

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Bishop, A. R.

P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
[Crossref]

Champneys, A. R.

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

Cuevas, J.

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

Eisenberg, H. S.

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

English, L. Q.

U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
[Crossref]

Fitrakis, E. P.

E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).

Frantzeskakis, D. J.

E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).

Hadžievski, Lj.

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

Johansson, M.

B. Sanchez-Rey and M. Johansson, “Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation,” Phys. Rev. E 71, 036627 (2005).
[Crossref]

Kevrekidis, P. G.

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
[Crossref]

E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).

Kip, D.

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

Kivshar, Yu. S.

P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
[Crossref]

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Louis, P. J. Y.

P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
[Crossref]

Luther-Davies, B.

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Maluckov, A.

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

Mazo, J. J.

E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
[Crossref] [PubMed]

Melvin, T. R. O.

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

Orlando, T. P.

E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
[Crossref] [PubMed]

Ostrovskaya, E. A.

P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
[Crossref]

Rasmussen, K.ø.

P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
[Crossref]

Rüter, C. E.

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

S., Wiggins

Wiggins S.Global Bifurcations and Chaos: Analytical Methods (Springer-Verlag New York Inc., 1988).

Sanchez-Rey, B.

B. Sanchez-Rey and M. Johansson, “Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation,” Phys. Rev. E 71, 036627 (2005).
[Crossref]

Schwarz, U. T.

U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
[Crossref]

Shandarov, V.

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

Sievers, A. J.

U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
[Crossref]

Silberberg, Y.

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

Smirnov, E.

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

Stepic, M,

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

Stepic, M.

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

Sukhorukov, A. A.

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

Susanto, H.

E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).

Trias, E.

E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39, 31–50 (2003).
[Crossref]

Int. J. mod. Phys. B (1)

P. G. Kevrekidis, K.ø. Rasmussen, and A. R. Bishop, “The Discrete Nonlinear Schrödinger Eauation: a Survey of Recent Results,” Int. J. mod. Phys. B 15, 2833–2900 (2001).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

P. J. Y. Louis, E. A. Ostrovskaya, and Yu. S. Kivshar, “Dispersion control for matter waves and gap solitons in optical superlattices,“ J. Opt. B: Quantum Semiclass. Opt. 6, S309–S317 (2004).
[Crossref]

Phys. Rep. (1)

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Phys. Rev. E (2)

B. Sanchez-Rey and M. Johansson, “Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation,” Phys. Rev. E 71, 036627 (2005).
[Crossref]

E. Smirnov, C. E. Rüter, M, Stepić, D. Kip, and V. Shandarov, “Formation and light guiding properties of dark solions in one-dimensional waveguide arrays,“ Phys. Rev. E 74, 065601(R) (2006).
[Crossref]

Phys. Rev. Lett. (4)

E. Trias, J. J. Mazo, and T. P. Orlando, “Dicrete breathers in nonlinear lattices: experimental detection in Joseph-son array,” Phys. Rev. Lett. 84, 741–744 (2000).
[Crossref] [PubMed]

U. T. Schwarz, L. Q. English, and A. J. Sievers, “Experimental generation and observation of intrisic localized spin wave modes in an antiferromagnet,“ Phys. Rev. Lett. 83, 223–226 (1999).
[Crossref]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Radiationless traveling waves in saturable nonlinear Schrödinger lattices,” Phys. Rev. Lett. 97, 124101 (2006).
[Crossref] [PubMed]

Lj. Hadžievski, A. Maluckov, M. Stepić, and D. Kip, “Power controlled soliton stability and steering in lattices with saturable nonlinearity,” Phys. Rev. Lett. 93, 033901 (2004).
[Crossref] [PubMed]

Other (2)

Wiggins S.Global Bifurcations and Chaos: Analytical Methods (Springer-Verlag New York Inc., 1988).

E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: Saturable versus cubic nonlinearitis,” arXiv:nlin.PS/0608023(2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Eigenvalues spectrum for the on-site (a) and the inter-site (b) dark localized mode. Numerical results are given with symbols, analytical with lines: squares (solid lines) for extremal imaginary EV, solid circles (dashed lines) for the real and circles for the imaginary part of EV discrete spectrum. The continuous EV spectrum is displayed as a shaded region.

Fig. 2.
Fig. 2.

Illustration of the stable propagation of the unstaggered dark breathers: a) the on-site near the left boundary of the existence region, ω= 0.08 and b) inter-site near the right boundary of the existence region, ω= 8.9.

Fig. 3.
Fig. 3.

The grand canonical free energy of the on-site and inter-site dark soliton (a). Free transverse motion of the discrete dark breathers for b) ω= 0.08 and c) ω= 8.9.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i U n t + U n + 1 + U n 1 2 U n + γ U n 1 + U n 2 = 0 ,
ωϕ n + ϕ n + 1 + ϕ n 1 2 ϕ n + γϕ n ( 1 + ϕ n 2 ) = 0 .
U c 2 = ( γ ω ) ω .
i ε n t ( ω + 2 ) ε n + ε n + 1 + ε n 1 + γ ( 1 + ϕ n 2 ) 2 ( ε ϕ n 2 ε n * ) = 0 .
d dt [ f n g n ] = [ 0 H + H 0 ] [ f n g n ] M [ f n g n ] ,
H ij + = ( ω + 2 ) δ ij δ i , j + 1 δ i , j 1 γ 1 + ϕ n 2 δ ij , H ij = H ij + + 2 γ ϕ n 2 ( 1 + ϕ n 2 ) 2 δ ij ,
Ω 2 = 4 [ γ ( 1 + cos K P cos q + ω ) ω 2 ] γ .
Ω uo = ± i ( γ ω 2 ) 2 2 , Ω ui = ± i 2 ( 1 + ω ω 2 γ ) ,
P c = n ( U cw 2 U n 2 ) , H c = H + γ [ P c ( 1 + U cw 2 ) N ln ( 1 + U cw ) ] .

Metrics