Abstract

We determine the single mode condition and analyze the modes discrimination of 1.3 μm InP based photonic-crystal vertical-cavity surface-emitting diode laser. To this aim we apply the fully vectorial, three dimensional Plane Wave Admittance Method and analyze a broad range of photonic-crystal parameters such as hole etching depth, distance between the holes and their diameters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, (Berlin: Springer-Verlang, 2003).
  2. A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
    [CrossRef]
  3. P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
    [CrossRef]
  4. N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
    [CrossRef]
  5. S. Ivanov, H. J. Unold, R. Michalzik, J. Maehnss, K. J. Ebeling, and I. A. Sukhoivanov, "Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals," J. Opt. Soc. Am. B 20, 2442 - 2447 (2003).
    [CrossRef]
  6. www.oxfordplasma.de/process/inp_phcr.htm
  7. T. Czyszanowski, M. Dems, and K. Panajotov "Improvement of the beam quality in the long wavelength photonic crystal VCSEL," submitted to Opt. Express
  8. T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov "Optimal radii of Photonic Crystal holes within DBR mirrors in long wavelength VCSEL," Opt. Express 15, 1301-1306 (2007).
    [CrossRef] [PubMed]
  9. M. Dems, R. Kotynski, and K. Panajotov "Plane Wave admittance method — a novel approach for determining the electromagnetic modes in photonic structures," Opt. Express 13, 3196 - 3207 (2005).
    [CrossRef] [PubMed]
  10. T. Czyszanowski, M. Dems, and K. Panajotov " Optimal parameters of Photonic-Crystal Vertical-Cavity Surface-Emitting Diode Lasers," accepted by IEEE J. Lightwave Technol.
  11. T. Czyszanowski and W. Nakwaski "Usability limits of the scalar effective frequency method used to determine modes distributions in oxide-confined vertical-cavity surface-emitting diode lasers," J. Phys. D: Appl. Phys. 39, 30 - 35 (2006).
    [CrossRef]

2007

2006

P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
[CrossRef]

T. Czyszanowski and W. Nakwaski "Usability limits of the scalar effective frequency method used to determine modes distributions in oxide-confined vertical-cavity surface-emitting diode lasers," J. Phys. D: Appl. Phys. 39, 30 - 35 (2006).
[CrossRef]

2005

A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
[CrossRef]

M. Dems, R. Kotynski, and K. Panajotov "Plane Wave admittance method — a novel approach for determining the electromagnetic modes in photonic structures," Opt. Express 13, 3196 - 3207 (2005).
[CrossRef] [PubMed]

2003

S. Ivanov, H. J. Unold, R. Michalzik, J. Maehnss, K. J. Ebeling, and I. A. Sukhoivanov, "Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals," J. Opt. Soc. Am. B 20, 2442 - 2447 (2003).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
[CrossRef]

Choquette, K. D.

P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
[CrossRef]

A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
[CrossRef]

Czyszanowski, T.

T. Czyszanowski, M. Dems, H. Thienpont, and K. Panajotov "Optimal radii of Photonic Crystal holes within DBR mirrors in long wavelength VCSEL," Opt. Express 15, 1301-1306 (2007).
[CrossRef] [PubMed]

T. Czyszanowski and W. Nakwaski "Usability limits of the scalar effective frequency method used to determine modes distributions in oxide-confined vertical-cavity surface-emitting diode lasers," J. Phys. D: Appl. Phys. 39, 30 - 35 (2006).
[CrossRef]

Danner, A. J.

P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
[CrossRef]

A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
[CrossRef]

Dems, M.

Ebeling, K. J.

Ivanov, S.

Kim, T. S.

A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
[CrossRef]

Kotynski, R.

Leisher, P. O.

P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
[CrossRef]

Maehnss, J.

Michalzik, R.

Nakwaski, W.

T. Czyszanowski and W. Nakwaski "Usability limits of the scalar effective frequency method used to determine modes distributions in oxide-confined vertical-cavity surface-emitting diode lasers," J. Phys. D: Appl. Phys. 39, 30 - 35 (2006).
[CrossRef]

Panajotov, K.

Sukhoivanov, I. A.

Thienpont, H.

Unold, H. J.

Yokouchi, N.

N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
[CrossRef]

Appl. Phys. Lett.

N. Yokouchi, A. J. Danner, and K. D. Choquette "Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures," Appl. Phys. Lett. 82, 1344 - 1346 (2003).
[CrossRef]

Electron. Lett.

A. J. Danner, T. S. Kim, and K. D. Choquette, "Single fundamental mode photonic crystal vertical cavity laser with improved output power," Electron. Lett. 41, 325 - 326 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

P. O. Leisher, A. J. Danner, and K. D. Choquette, "Single-Mode 1.3-μm Photonic Crystal Vertical-Cavity Surface-Emitting Laser," IEEE Photon. Technol. Lett. 18, 2156 - 2158 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

T. Czyszanowski and W. Nakwaski "Usability limits of the scalar effective frequency method used to determine modes distributions in oxide-confined vertical-cavity surface-emitting diode lasers," J. Phys. D: Appl. Phys. 39, 30 - 35 (2006).
[CrossRef]

Opt. Express

Other

H. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, (Berlin: Springer-Verlang, 2003).

www.oxfordplasma.de/process/inp_phcr.htm

T. Czyszanowski, M. Dems, and K. Panajotov "Improvement of the beam quality in the long wavelength photonic crystal VCSEL," submitted to Opt. Express

T. Czyszanowski, M. Dems, and K. Panajotov " Optimal parameters of Photonic-Crystal Vertical-Cavity Surface-Emitting Diode Lasers," accepted by IEEE J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic view of the bottom-emitting 1300-nm InP-based AlGaInAs quantum well (QW) PC VCSEL design. The photonic-crystal (PC) is shown as straight air columns surrounding the central part of the VCSEL cavity and etched throughout the upper DBR, (b). the typical intensity distribution of the fundamental mode within the active region and the first ring of the photonic crystal. The diameter of the hole (a) the distance between the hole axes - the pitch (L) and the optical aperture (2 RA ) are defined.

Fig. 2.
Fig. 2.

Region of single mode operation (gray fields) for six different optical apertures (from RA = 1 μm to RA = 6 μm) a) - f) mapped in the plane of etching depth and a/L ratio. The horizontal lines assign the PC parameters, which have been chosen in the analysis presented in Figs. 3 and 4.

Fig. 3.
Fig. 3.

Fundamental mode wavelength [(a) and (b)] and mode discrimination for the real eigen-wavelength [(c) and (d)] versus etching depth, under a change of the optical aperture (RA ) [(a) and (c)] and the a/L ratio [(b) and (d)].

Fig. 4.
Fig. 4.

The difference of the modal gains α m0 and α m1 of the fundamental and the first order mode versus etching depth, under a change of (a) optical aperture and b) a/L ratio. Dots in (a) relates to the PC parameters used in Figs. 5 and 6.

Fig. 5.
Fig. 5.

Distribution of a) HE11 and b) HE21 mode within active region for 6.5 μm etching depth and PC parameters determined in Fig. 4(a) by the large black dots.

Fig. 6.
Fig. 6.

Distribution of a) HE11 and b) HE21 mode within active region for 12.4 μm etching depth and PC parameters determined in the Fig. 4(a) by the corresponding dot.

Metrics