Abstract

We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency β ∼ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ∼67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 ± 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
    [Crossref]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
    [Crossref]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
  4. P. Grangier, B. Sanders, and J. Vučkovic′, “Single photons on demand,” New Journal of Physics6 (2004).
    [Crossref]
  5. P. Michler, ed., Single quantum dots: Fundamentals, Applications, and New Concepts (Topics in Applied Physics, Springer-Verlag, 2003).
  6. C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
    [Crossref] [PubMed]
  7. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
    [Crossref]
  8. A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
    [Crossref]
  9. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
    [Crossref]
  10. J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
    [Crossref]
  11. D. A. Fattal and Y. Yamamoto, “Single photons for quantum information processing,” Ph.D. thesis, Stanford University (2005).
  12. W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
    [Crossref] [PubMed]
  13. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
    [Crossref] [PubMed]
  14. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  15. D. Englund and J. Vučkovic′, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–83 (2006).
    [Crossref] [PubMed]
  16. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–73 (2005).
    [Crossref] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
    [Crossref] [PubMed]
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
    [Crossref]
  19. A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
    [Crossref]
  20. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
    [Crossref]
  21. J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
    [Crossref]
  22. N. H. et al., “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606–6614 (2004).
    [Crossref]

2007 (1)

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

2006 (2)

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

D. Englund and J. Vučkovic′, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–83 (2006).
[Crossref] [PubMed]

2005 (5)

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–73 (2005).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
[Crossref] [PubMed]

2004 (3)

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

N. H. et al., “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606–6614 (2004).
[Crossref]

A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

2002 (1)

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
[Crossref]

1999 (1)

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

1997 (2)

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

1995 (1)

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Abram, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Atatüre, M.

A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
[Crossref]

Awschalom, D. D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Barrett, M. D.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Blakestad, R. B.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Blinov, B. B.

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Britton, J.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Burkard, G.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Chiaverini, J.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

DiVincenzo, D. P.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Duan, L.-M.

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

D. Englund and J. Vučkovic′, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–83 (2006).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

Fattal, D.

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

Fattal, D. A.

D. A. Fattal and Y. Yamamoto, “Single photons for quantum information processing,” Ph.D. thesis, Stanford University (2005).

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

Grangier, P.

P. Grangier, B. Sanders, and J. Vučkovic′, “Single photons on demand,” New Journal of Physics6 (2004).
[Crossref]

H., N.

Imamoglu, A.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Imamoglu, I.

A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
[Crossref]

Itano, W. M.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Jost, J. D.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Kimble, H. J.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

King, B. E.

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Kiraz, A.

A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
[Crossref]

Knill, E.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
[Crossref]

Langer, C.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Laurent, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Le Gratiet, L.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Leibfried, D.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Lemaître, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Levenson, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Liu, R. B.

W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
[Crossref] [PubMed]

Loss, D.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

Mattle, K.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Meekhof, D. M.

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
[Crossref]

Moehring, D. L.

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

Monroe, C.

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Ozeri, R.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Pan, J.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Raineri, F.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Robert-Philip, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Sagnes, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Sanders, B.

P. Grangier, B. Sanders, and J. Vučkovic′, “Single photons on demand,” New Journal of Physics6 (2004).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

Schaetz, T.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

Sham, L. J.

W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
[Crossref] [PubMed]

Sherwin, M.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Small, A.

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Varoutsis, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Vuckovic, J.

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–73 (2005).
[Crossref] [PubMed]

Vuckovic', J.

D. Englund and J. Vučkovic′, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–83 (2006).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

P. Grangier, B. Sanders, and J. Vučkovic′, “Single photons on demand,” New Journal of Physics6 (2004).
[Crossref]

Vukovic, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13, 5064–73 (2005).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Wineland, D. J.

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

Yamamoto, Y.

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

D. A. Fattal and Y. Yamamoto, “Single photons for quantum information processing,” Ph.D. thesis, Stanford University (2005).

Yao, W.

W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
[Crossref] [PubMed]

Zeilinger, A.

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

Appl. Phys. Lett. (2)

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073,102 (2007).
[Crossref]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 3107 (2005).
[Crossref]

Nature (6)

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland, “Realization of quantum error correction,” Nature 432, 602–5 (2005).
[Crossref]

B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature 428, 153–7 (2004).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–9 (1997).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 4652 (2001).
[Crossref]

C. Santori, D. Fattal, J. Vučkovic′, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–7 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

A. Kiraz, M. Atatüre, and I. Imamoǧlu, “Quantum-dot single-photon sources: Prospects for applications quantum-information processing,” Phys. Rev. A 69, p.032,305-1–032,305-10 (2004).
[Crossref]

Phys. Rev. Lett. (5)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovic′, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 95, 013,904 (2005).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–24 (1997).
[Crossref]

A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[Crossref]

C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett. 75(25), 4714–4717 (1995).
[Crossref]

W. Yao, R. B. Liu, and L. J. Sham, “Theory of Control of the Spin-Photon Interface for Quantum Networks,” Phys. Rev. Lett. 95, 030,504 (2005).
[Crossref] [PubMed]

Physica E Low-Dimensional Systems and Nanostructures (1)

J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E Low-Dimensional Systems and Nanostructures 32, 466–470 (2006).
[Crossref]

Other (4)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

P. Grangier, B. Sanders, and J. Vučkovic′, “Single photons on demand,” New Journal of Physics6 (2004).
[Crossref]

P. Michler, ed., Single quantum dots: Fundamentals, Applications, and New Concepts (Topics in Applied Physics, Springer-Verlag, 2003).

D. A. Fattal and Y. Yamamoto, “Single photons for quantum information processing,” Ph.D. thesis, Stanford University (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic network consisting of two cavities and one cavity-coupled QD. The QD is coupled to a cavity (rate g 0) and decays with SE rate Γ. The cavity, in turn, is coupled to a waveguide and leaky modes at field coupling rates κ and κ, respectively. The waveguide field decay rate is κ W .

Fig. 2.
Fig. 2.

Coupled cavities system. (a) The identical source (S) and target (T) cavities are connected via the 25-μm. Design parameters: PC, a = 256 nm, r 0 = 0.3a. Outer cavities, r 1 = 0.25a, r 0 = 0.3a. Waveguide, rw = 0.25a for the bounding rows of holes. Inset: Electric field pattern. (b) Waveguide dispersion diagram showing band Boe used for photon transfer. The cavity resonance intersects the band’s linear dispersion region just below kx = π/a (field pattern in inset).

Fig. 3.
Fig. 3.

Experimental setup. The sample in the He-flow cryostat is addressed with a confocal microscope with a stir-able pump beam (spot diameter ∼ 1 μm) and movable probe aperture (selection region diameter 2.9 μm). PL is directed to the 0.75 m spectrometer (with LN-cooled Si detector), 0.75 m streak camera, or Hanbury-Brown-Twiss or Hong-Ou-Mandel setups. We estimate the coupling efficiency from cavity to external optics at ∼ 11%.

Fig. 4.
Fig. 4.

Cavity-cavity coupling via a waveguide. (a) Pumping and observation from source (‘S’) and target (‘T’) cavities. (b) Cavity-coupling via a waveguide resonance. The waveguide is pumped and emission collected from the full structure (‘WG-all’) or spatially filtered from the waveguide (‘WG-WG’) or cavity T (‘WG-T’). (c) Broad emission in cavity S (plot ‘SS’) is filtered into the target cavity (plot ‘ST‘). (d) When the QD exciton at 897.3 nm in cavity S is pumped (resonantly at 878 nm, 460 μW, 1μm focal spot), the emission is observed from S (‘SS’) and T (‘ST’). The cross-polarized spectrum from S shows nearly complete quenching of QD emission (‘SS, 90°‘). The line at 897.3 nm is only observed when S is pumped.

Fig. 5.
Fig. 5.

Single photon source characterization. (a) Autocorrelation data when cavity S pumped and collected. (b) Streak camera data indicate exciton lifetime τ = 116 ps. The rise-time is measured at 23 ps with a lower-density grating with higher time response (data not shown). Inset: Two-photon interference experiment (Fig.3). Colliding indistinguishable photons interfere, resulting in a decreased area of peak L S. The area does not vanish largely because of non-zero g (2)(0) of the source. (c) Autocorrelation data when cavity S pumped and T is collected (with grating filter). (d) Cavity S pumped and T collected directly (no grating filter).

Fig. 6.
Fig. 6.

The slightly modified waveguide-coupling design with a single separating hole between cavities and waveguide yields higher coupling – in this case, the S/T field intensity ratio is estimated at 0.49. No single QD was coupled to S in this structure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

c ˙ s ( t ) = i κ c w ( t ) κ c s ( t ) + p ( t )
c ˙ t ( t ) = i κ c w ( t ) κ c t ( t )
c ˙ w ( t ) = i κ c s ( t ) i κ c t ( t ) ( κ W + i Δ ) c w ( t )
p ( t ) = i g 0 e ( t )
e ˙ ( t ) = Γ 2 e ( t ) i g 0 g ( t )

Metrics