Abstract

An optical resonator that is suited to a large-scale, space-based solar-pumped solid-state lasers is proposed, and it is studied by numerical simulations. The resonator consists of a conical-toroidal reflector element on which a doughnut-shaped thin-disk active medium is set, and an output coupler. Unlike the ordinary thin-disk lasers, the optical ray of the proposed resonator passes the medium radially. With this arrangement, the resonator can enjoy the benefits of the thin-disk geometry, i. e., good thermal removability and low index gradient, while getting rid of the disadvantages of them as a solar-pumped laser, low round-trip gain and poor beam quality. The output power, beam quality, thermomechanical properties, and alignment stability of the proposed resonator combined with a Nd/Cr codoped GSGG is discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Glaser, "Power from the Sun: Its Future," Science 22, 857-861 (1968).
    [CrossRef]
  2. R. L. Fork, "High-energy lasers may put power in space," Laser Focus World  113-114 September (2001).
  3. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
    [CrossRef]
  4. M. Endo, "Numerical simulation of an optical resonator for generation of a doughnut-like laser beam," Opt. Express 12, 1959-1965 (2004).
    [CrossRef] [PubMed]
  5. A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-458 (1961).
  6. I. H. Hwang and J. H. Lee, "Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2129- 2134 (1991).
    [CrossRef]
  7. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet," J. Opt. Soc. Am. B 3, 102-114 (1986).
    [CrossRef]
  8. J. Vetrovec, "Active-mirror amplifier for high average power," Proc. SPIE 4270, 45-55 (2001).
    [CrossRef]

2004

2001

J. Vetrovec, "Active-mirror amplifier for high average power," Proc. SPIE 4270, 45-55 (2001).
[CrossRef]

R. L. Fork, "High-energy lasers may put power in space," Laser Focus World  113-114 September (2001).

2000

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

1991

I. H. Hwang and J. H. Lee, "Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2129- 2134 (1991).
[CrossRef]

1986

1968

P. E. Glaser, "Power from the Sun: Its Future," Science 22, 857-861 (1968).
[CrossRef]

1961

A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-458 (1961).

Caird, J. A.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

Endo, M.

Fork, R. L.

R. L. Fork, "High-energy lasers may put power in space," Laser Focus World  113-114 September (2001).

Fox, A. G.

A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-458 (1961).

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

Glaser, P. E.

P. E. Glaser, "Power from the Sun: Its Future," Science 22, 857-861 (1968).
[CrossRef]

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

Hwang, I. H.

I. H. Hwang and J. H. Lee, "Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2129- 2134 (1991).
[CrossRef]

Krupke, W. F.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

Lee, J. H.

I. H. Hwang and J. H. Lee, "Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2129- 2134 (1991).
[CrossRef]

Li, T.

A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-458 (1961).

Marion, J. E.

Shinn, M. D.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

Stokowski, S. E.

Vetrovec, J.

J. Vetrovec, "Active-mirror amplifier for high average power," Proc. SPIE 4270, 45-55 (2001).
[CrossRef]

Bell Syst. Tech. J.

A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Tech. J. 40, 453-458 (1961).

IEEE J. Quantum Electron.

I. H. Hwang and J. H. Lee, "Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2129- 2134 (1991).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW CW thin disc laser," IEEE J. Quantum Electron. 6, 650- 657 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Laser Focus World

R. L. Fork, "High-energy lasers may put power in space," Laser Focus World  113-114 September (2001).

Opt. Express

Proc. SPIE

J. Vetrovec, "Active-mirror amplifier for high average power," Proc. SPIE 4270, 45-55 (2001).
[CrossRef]

Science

P. E. Glaser, "Power from the Sun: Its Future," Science 22, 857-861 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic drawing of a resonator with a conical-toroidal reflector element and a thin-disc active medium.

Fig. 2.
Fig. 2.

Schematic drawing of the resonator geometry and calculation model.

Fig. 3.
Fig. 3.

Description of the waveguide mode propagation model.

Fig. 4.
Fig. 4.

Calculated resonator loss per round trip as a function of the vertex position Δy for different R. Left: (rp > rs ) and right: (rp < rs ).

Fig. 5.
Fig. 5.

Laser output and beam quality of the loaded resonator calculation, as a function of the vertex position Δy. Input irradiance is Sc =1,000.

Fig. 6.
Fig. 6.

Near-field and far-field patterns of the resonator. Input irradiance is Sc =1,000, vertex position is Δy = 0.6 mm.

Fig. 7.
Fig. 7.

Output power and optical-optical conversion efficiency of the loaded resonator.

Fig. 8.
Fig. 8.

Model of the thermomechanical analysis of the active medium.

Fig. 9.
Fig. 9.

Absorbed power per unit volume and temperature of the active medium as a function of the position from the heat sink.

Fig. 10.
Fig. 10.

Relative laser output power as a function of the tilt of the output coupler relative to the feedback mirror.

Tables (3)

Tables Icon

Table 1. Dimension of the calculated resonator

Tables Icon

Table 2. Optical properties of the Nd/Cr: GSGG[6]

Tables Icon

Table 3. Thermal properties of the Nd/Cr: GSGG[7]

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

y R = ( x P 2 + y P 2 ) 1 2 + H t 2 , zwφ = tan 1 ( y P x P )
E p ( x P , y P ) = E x ( x P , y P ) cos φ + E y ( x P , y P ) sin φ
E s ( x P , y P ) = E x ( x P , y P ) sin φ + E y ( x P , y P ) cos φ
E y ( φ , y R ) = r p ( x P 2 + y P 2 ) 1 2 E p exp [ ikH ]
E φ ( φ , y R ) = r s ( x P 2 + y P 2 ) 1 2 E s exp [ ikH ]
E 0 = E 00 exp [ δ l 2 ( g 0 1 + I I s α ) ] ,
E ( y ) = E ( 0 ) + E ( 1 ) + E ( + 1 ) + E ( 2 ) + E ( + 2 ) +
= E ( y ) + E ( t y ) + E ( t y ) + E ( 2 t + y ) + E ( 2 t + y ) +
( t 2 < y < t 2 ) .
R p = I AM 0 ( λ ) λ hc { 1 exp [ 2 σ ab ( λ ) Nt ] d λ }
W p = R p N t .
g 0 = σ N W p t sp S c .
I ab = I AM 0 ( λ ) δdλ
F ab = I AM 0 ( λ ) λ hc δdλ .
η L ( max ) = F ab h v L I AM 0 ( λ ) d λ
α ab = I AM 0 ( λ ) σ ab Ndλ I ab .
η ab = 1 exp [ 2 α ab t ] ,
P ab ( z ) = α ab I ab S c ( 1 η L ) [ e α ab ( t z ) + e α ab ( t + z ) ]
T S T 0 = I ab S c η ab ( 1 η L ) t 2 κ .
( T S T 0 ) max = 3 R T 2 κ .

Metrics