Abstract

Although, photorefractive materials have been discovered for many years, research using pulsed laser as the light source and photorefractive material as the recording media to record a pulsed laser hologram have been scarce despite its vast application potential. A newly proposed optical configuration which adopts a Nd:YAG pulsed laser of 532nm wavelength as the light source and uses an iron-doped lithium niobate crystal as the recording media for holographic recording of an undeformed specimen is presented. Real-time holographic interferometry was achieved by inducing repetitive impacts on the specimen through a precise piezoelectric impact hammer. With timing control better than microseconds, several interferograms created at each instance were obtained with each corresponding 9ns laser pulse. A five-step phase-shifting technology, median filter algorithm, and weighted iterative DFT phase unwrap algorithm were integrated to reconstruct the deformation information at each instance. Using a series of measured deformation data, surface wave propagation phenomenon on the specimen could be observed. Some of the potential applications for this newly developed pulsed laser holographic interferometry system are detailed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Aprahamian, “Applications of optical holography to applied mechanics,” in Proceedings of the Engineering Applications of Holography Symposium, (Feb. 16–17th, 1972), pp. 19–36.
  2. A. J. Decker, “Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams,” Appl. Opt. 29, 2696–2700 (1990).
    [Crossref] [PubMed]
  3. L. Crawforth, C.-K. Lee, and A. C. Munce, “Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions,” in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404–412.
  4. Y. Chen, “An ESPI-based Full-field Elastic Wave Propagation Metrology System,” Degree Thesis, (National Taiwan University, 2000).
  5. U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.
  6. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [Crossref]
  7. N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).
  8. N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).
  9. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
    [Crossref]
  10. T. K. Gaylord, T. A. Rabson, F. K. Tittel, and C. R. Quick, “Pulsed writing of solid state holograms,” Appl. Opt. 12, 414–415 (1973).
    [Crossref] [PubMed]
  11. P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
    [Crossref]
  12. C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
    [Crossref]
  13. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [Crossref]
  14. R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).
  15. X. Wang, R. Magnusson, and A. Haji-Sheikh, “Real-time interferometry with photorefractive reference holograms,” Appl. Opt. 32, 1983–1986 (1993).
    [Crossref]
  16. A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, and T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
    [Crossref] [PubMed]
  17. B. Pouet and S. Krishnaswamy, “Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements,” Appl. Opt. 35, 787–794 (1996).
    [Crossref] [PubMed]
  18. M. P. Georges and P. C. Lemaire, “Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals,” Appl. Opt. 34, 7497–7506 (1995).
    [Crossref] [PubMed]
  19. L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
    [Crossref]
  20. L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, “Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography,” Opt. Lett. 20, 1652–1654 (1995).
    [Crossref]
  21. L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
    [Crossref]
  22. J. P. Huignard and J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration,” Appl. Opt. 16, 1807–1809 (1977).
    [Crossref] [PubMed]
  23. F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
    [Crossref]
  24. C. M. Vest, Holography Interferometry (John Wiley&Sons, 1979).
  25. D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP Publishing Ltd., 1993).
  26. P. Hariharan, B. F. Orbel, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation,” Appl. Opt. 26, 2504–2507 (1987).
    [Crossref] [PubMed]
  27. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. A 12, 1997–2008 (1995).
    [Crossref]
  28. C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).
  29. A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
    [Crossref]
  30. H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988).
    [Crossref]
  31. H. Takajo and T. Takahashi, “Noniterative method for the exact solution for the normal equation in leastsquares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 1818–1827 (1988).
    [Crossref]
  32. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [Crossref]
  33. LabVIEWTM User Manual (National Instruments, Austin, TX, 2000).
  34. J. Xie and Q. Wang, “Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal,” Optical Technique 26, 268–269 (2000).
  35. Quanta-Ray PRO-Series: Pulsed Nd:Yag Lasers User’s Manual (Spectra-Physics,1999).
  36. PIV: Pulsed Nd:Yag Laser for particle Image Velocimetry User’s Manual (Spectra-Physics, 1997).
  37. InsightTM, Particle Image Velocimetry Software, Instruction Manual, (TSI Incorporated, 2000).
  38. C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
    [Crossref]

2000 (1)

J. Xie and Q. Wang, “Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal,” Optical Technique 26, 268–269 (2000).

1998 (4)

C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
[Crossref]

F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
[Crossref]

C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).

L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
[Crossref]

1997 (2)

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

1996 (1)

1995 (3)

1994 (1)

1993 (1)

1990 (2)

A. J. Decker, “Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams,” Appl. Opt. 29, 2696–2700 (1990).
[Crossref] [PubMed]

R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).

1989 (1)

1988 (2)

1987 (1)

1979 (3)

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[Crossref]

1977 (1)

1974 (2)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[Crossref]

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

1973 (1)

1968 (1)

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Aprahamian, R.

R. Aprahamian, “Applications of optical holography to applied mechanics,” in Proceedings of the Engineering Applications of Holography Symposium, (Feb. 16–17th, 1972), pp. 19–36.

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Bagby, J. S.

R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, and T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[Crossref] [PubMed]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Bertani, D.

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Black, T. D.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Cai, L. Z.

L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
[Crossref]

Capanni, A.

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Cetica, M.

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Chang, H. Y.

C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).

Chang, P.

C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
[Crossref]

Chang, Paul S. H.

C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
[Crossref]

Chen, C. W.

C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).

Chen, C.-T.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[Crossref]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[Crossref]

Chen, Y.

Y. Chen, “An ESPI-based Full-field Elastic Wave Propagation Metrology System,” Degree Thesis, (National Taiwan University, 2000).

Crawforth, L.

L. Crawforth, C.-K. Lee, and A. C. Munce, “Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions,” in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404–412.

Decker, A. J.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Eiju, T.

Francini, F.

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[Crossref]

Gaylord, T. K.

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

T. K. Gaylord, T. A. Rabson, F. K. Tittel, and C. R. Quick, “Pulsed writing of solid state holograms,” Appl. Opt. 12, 414–415 (1973).
[Crossref] [PubMed]

Georges, M. P.

Ghiglia, D. C.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[Crossref]

Hafiz, A.

R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).

A. Hafiz, R. Magnusson, J. S. Bagby, D. R. Wilson, and T. D. Black, “Visualization of aerodynamic flow fields using photorefractive crystals,” Appl. Opt. 28, 1521–1524 (1989).
[Crossref] [PubMed]

Haji-Sheikh, A.

X. Wang, R. Magnusson, and A. Haji-Sheikh, “Real-time interferometry with photorefractive reference holograms,” Appl. Opt. 32, 1983–1986 (1993).
[Crossref]

R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).

Hariharan, P.

Herriau, J. P.

Huang, U. F.

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Huignard, J. P.

Kim, D. M.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[Crossref]

Krishnaswamy, S.

Kukhatarev, N. V.

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

Labrunie, L.

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, “Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography,” Opt. Lett. 20, 1652–1654 (1995).
[Crossref]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[Crossref]

Launay, J. C.

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, “Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography,” Opt. Lett. 20, 1652–1654 (1995).
[Crossref]

Lee, C. K.

C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
[Crossref]

C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Lee, C.-K.

L. Crawforth, C.-K. Lee, and A. C. Munce, “Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions,” in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404–412.

Lee, S. S.

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Leidenbach, S.

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

Lemaire, P. C.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Liou, J.

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Magnusson, R.

Markov, V. B.

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

Munce, A. C.

L. Crawforth, C.-K. Lee, and A. C. Munce, “Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions,” in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404–412.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Odulov, S. G.

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

Orbel, B. F.

Pauiat, G.

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

Pauliat, G.

Pezzati, L.

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Pouet, B.

Qu, X. M.

L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
[Crossref]

Quick, C. R.

Rabson, T. A.

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

T. K. Gaylord, T. A. Rabson, F. K. Tittel, and C. R. Quick, “Pulsed writing of solid state holograms,” Appl. Opt. 12, 414–415 (1973).
[Crossref] [PubMed]

Rathjen, C.

Reid, G. T.

D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP Publishing Ltd., 1993).

Rickermann, F.

F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
[Crossref]

Riehemann, S.

F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
[Crossref]

Robinson, D. W.

D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP Publishing Ltd., 1993).

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[Crossref]

Romero, L. A.

Roosen, G.

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

L. Labrunie, G. Pauliat, G. Roosen, and J. C. Launay, “Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography,” Opt. Lett. 20, 1652–1654 (1995).
[Crossref]

Shah, P.

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

Soskin, M. S.

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

Takahashi, T.

Takajo, H.

Tittel, F. K.

Tittle, F. K.

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

Vest, C. M.

C. M. Vest, Holography Interferometry (John Wiley&Sons, 1979).

Vinetskii, V. L.

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

von Bally, G.

F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
[Crossref]

von der Linde, D.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[Crossref]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[Crossref]

Wang, Q.

J. Xie and Q. Wang, “Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal,” Optical Technique 26, 268–269 (2000).

Wang, X.

Wang, Y. R.

L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
[Crossref]

Wilson, D. R.

Wu, K. C.

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Xie, J.

J. Xie and Q. Wang, “Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal,” Optical Technique 26, 268–269 (2000).

Appl. Opt. (8)

Appl. Phys. Lett. (5)

P. Shah, T. A. Rabson, F. K. Tittle, and T. K. Gaylord, “Volume holographic recording and storage in Fedoped LiNbO3 using optical pulses,” Appl. Phys. Lett. 24, 130–131 (1974).
[Crossref]

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3: Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[Crossref]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[Crossref]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[Crossref]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[Crossref]

Ferroelectrics (2)

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: steady state,” Ferroelectrics 23, 949–960 (1979).

N. V. Kukhatarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals II: beam coupling and light amplification,” Ferroelectrics 23, 961–964 (1979).

J. Electron. Packaging. (1)

R. Magnusson, A. Hafiz, J. S. Bagby, and A. Haji-Sheikh, “Holographic interferometry using self-developing optical crystals for heat flux evaluation,” J. Electron. Packaging. 122, 225–259 (1990).

J. Opt. Soc. Am. A (4)

Opt. Commun. (2)

L. Labrunie, G. Pauiat, J. C. Launay, S. Leidenbach, S. Leidenbach, and G. Roosen, “Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal,” Opt. Commun. 140, 119–127 (1997).
[Crossref]

F. Rickermann, S. Riehemann, and G. von Bally, “Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses,” Opt. Commun. 155, 91–98 (1998).
[Crossref]

Opt. Eng. (1)

A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36, 2466–2472 (1997).
[Crossref]

Opt. Laser Technol. (1)

L. Z. Cai, Y. R. Wang, and X. M. Qu, “Wavefront shifting photorefractive holographic interferometer and its applications in optical testing,” Opt. Laser Technol. 30, 1–5 (1998).
[Crossref]

Opt. Lett. (1)

Optical Technique (1)

J. Xie and Q. Wang, “Analysis and calculation on photorefractive property of Fe:LiNbO3 crystal,” Optical Technique 26, 268–269 (2000).

Smart Mater. Struct. (1)

C. K. Lee, Paul S. H. Chang, and P. Chang, “Miniature Piezoelectric Actuators: Design Thinking, Fabrication, and Performance Evaluations,” Smart Mater. Struct. 7, 312–326 (1998).
[Crossref]

The Chinese Journal of Mechanics, Series A (1)

C. W. Chen, H. Y. Chang, and C. K. Lee, “An innovative phase shifting system for non-destructive testing,” The Chinese Journal of Mechanics, Series A 14, 31–39 (1998).

Other (10)

C. M. Vest, Holography Interferometry (John Wiley&Sons, 1979).

D. W. Robinson and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (IOP Publishing Ltd., 1993).

Quanta-Ray PRO-Series: Pulsed Nd:Yag Lasers User’s Manual (Spectra-Physics,1999).

PIV: Pulsed Nd:Yag Laser for particle Image Velocimetry User’s Manual (Spectra-Physics, 1997).

InsightTM, Particle Image Velocimetry Software, Instruction Manual, (TSI Incorporated, 2000).

LabVIEWTM User Manual (National Instruments, Austin, TX, 2000).

R. Aprahamian, “Applications of optical holography to applied mechanics,” in Proceedings of the Engineering Applications of Holography Symposium, (Feb. 16–17th, 1972), pp. 19–36.

L. Crawforth, C.-K. Lee, and A. C. Munce, “Application of pulsed laser holographic interferometry to the study of magnetic disk drive component motions,” in Proceedings 1990 International Conference on Hologram Interferometry and Speckle Metrology, (Nov. 1990), pp. 404–412.

Y. Chen, “An ESPI-based Full-field Elastic Wave Propagation Metrology System,” Degree Thesis, (National Taiwan University, 2000).

U. F. Huang, J. Liou, S. S. Lee, C. K. Lee, and K. C. Wu, “A Full-Field Wave Propagation Pulsed laser Holographic Measurement Technique,” in The First Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, (Tainan, Taiwan, December 19, 2001), pp. 239–248.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Index grating erasure under different recording beam intensities

Fig. 2.
Fig. 2.

Index grating erasure under different intensity ratios of reference beams and object beams

Fig. 3.
Fig. 3.

Schematic of optical experiment set-up

Fig. 4.
Fig. 4.

Schematic for device control & synchronization

Fig. 5.
Fig. 5.

Laser pulses and image capturing timing sequences. For each set, five slightly different intensity maps captured by Frame 2 were obtained while the time delay between the hammer impact and 2nd pulse was fixed. (Only the images captured by Frame 2 of pulse 2 were adopted in this experiment as pulse 1 was used for triggering and synchronizing purposes.)

Fig. 6.
Fig. 6.

Image processing procedures from interferograms to unwrapped deformation profiles.

Fig. 7.
Fig. 7.

Unwrapped 3D-deformation profiles with different delay times: (a) 5μs, (b) 10μs, and (c) 25μs after impact by the hammer. Wave growth starting from the impact location can be clearly observed where it is about to propagate through the entire specimen.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I 0 [ 1 + v cos ( ϕ 2 α ) ]
I 2 = I 0 [ 1 + v cos ( ϕ α ) ]
I 3 = I 0 [ 1 + v cos ϕ ]
I 4 = I 0 [ 1 + v cos ( ϕ + α ) ]
I 5 = I 0 [ 1 + v cos ( ϕ + 2 α ) ]
cos α = I 1 I 5 2 ( I 2 I 4 )
tan ϕ = 1 cos 2 α sin α × I 1 I 4 2 I 3 I 1 I 5
ϕ = tan 1 { 1 cos 2 α sin α × I 2 I 4 2 I 3 I 1 I 5 } .
2 x 2 ϕ ( x , y ) + 2 y 2 ϕ ( x , y ) = ρ ( x , y )

Metrics