Abstract

We have developed a simple detection scheme that uses an 8-bit CMOS camera and spans over 60-dB dynamic range. By use of noise reduction techniques, the 8-bit CMOS camera yields a 40-dB dynamic-range signal, which is further increased by 20 dB by making a replica of the signal beam on another part of the detector chip. We have experimentally validated this scheme in a scanning and a single-shot autocorrelator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Perry, et al., “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999).
    [CrossRef]
  2. J. D. Zuegel, et al., “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  4. D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8, 1774–1785 (2001).
    [CrossRef]
  5. P. A. Norreys et al., “PW lasers: matter in extreme laser fields,” Plasma Phys. Controlled Fusion 46, 13–21 (2004)
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultra-short optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [CrossRef]
  7. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultra-short pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  8. F. Salin et al., “Single-shot measurement of a 52-fs pulse,” Appl. Opt. 26, 4528–4531 (1987).
    [CrossRef] [PubMed]
  9. A. Brun et al., “Single-shot characterization of ultra-short light pulses,” J. Phys. D: Appl. Phys. 24, 1225–1233 (1991).
    [CrossRef]
  10. M. Raghuramaiah et al., “A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations,” Sadhana 26, 603–611 (2001).
    [CrossRef]
  11. N. Forget et al., “Pump-noise transfer in optical parametric chirped-pulse amplification,” Opt. Lett. 30, 2921–2923 (2005).
    [CrossRef]
  12. O. Konoplev et al., “Ultrahigh dynamic range measurement of high-contrast pulse using second-order autocorrelator,” LLE Review 75, 159–170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html
  13. A. Braun, et al., “Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement,” Opt. Lett. 20, 1889–1891 (1995).
    [CrossRef] [PubMed]
  14. P. F. Curley, et al., “High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems,” Opt. Commun. 120, 71–77 (1995).
    [CrossRef]
  15. E. J. Divall and I. N. Ross, “High dynamic range contrast measurements by use of an optical parametric amplifier correlator,” Opt. Lett. 29, 2273–2275 (2004).
    [CrossRef] [PubMed]
  16. A. Hoffman, et al., “CMOS Detector Technology,” Exp. Astron. 19, 111–134 (2005)
    [CrossRef]
  17. L. Sarger and J. Oberle, How to measure the characteristics of laser pulses in Femtosecond Laser Pulses, C. Rulliere, ed., (Springer-Verlag, New York,2004).

2006 (1)

J. D. Zuegel, et al., “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

2005 (2)

2004 (2)

2001 (2)

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8, 1774–1785 (2001).
[CrossRef]

M. Raghuramaiah et al., “A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations,” Sadhana 26, 603–611 (2001).
[CrossRef]

1999 (1)

1998 (2)

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultra-short optical pulses,” Opt. Lett. 23, 792–794 (1998).
[CrossRef]

O. Konoplev et al., “Ultrahigh dynamic range measurement of high-contrast pulse using second-order autocorrelator,” LLE Review 75, 159–170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html

1995 (2)

A. Braun, et al., “Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement,” Opt. Lett. 20, 1889–1891 (1995).
[CrossRef] [PubMed]

P. F. Curley, et al., “High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems,” Opt. Commun. 120, 71–77 (1995).
[CrossRef]

1993 (1)

1991 (1)

A. Brun et al., “Single-shot characterization of ultra-short light pulses,” J. Phys. D: Appl. Phys. 24, 1225–1233 (1991).
[CrossRef]

1987 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Braun, A.

Brun, A.

A. Brun et al., “Single-shot characterization of ultra-short light pulses,” J. Phys. D: Appl. Phys. 24, 1225–1233 (1991).
[CrossRef]

Curley, P. F.

P. F. Curley, et al., “High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems,” Opt. Commun. 120, 71–77 (1995).
[CrossRef]

Divall, E. J.

Forget, N.

Hoffman, A.

A. Hoffman, et al., “CMOS Detector Technology,” Exp. Astron. 19, 111–134 (2005)
[CrossRef]

Iaconis, C.

Kane, D. J.

Konoplev, O.

O. Konoplev et al., “Ultrahigh dynamic range measurement of high-contrast pulse using second-order autocorrelator,” LLE Review 75, 159–170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Norreys, P. A.

P. A. Norreys et al., “PW lasers: matter in extreme laser fields,” Plasma Phys. Controlled Fusion 46, 13–21 (2004)
[CrossRef]

Oberle, J.

L. Sarger and J. Oberle, How to measure the characteristics of laser pulses in Femtosecond Laser Pulses, C. Rulliere, ed., (Springer-Verlag, New York,2004).

Perry, M. D.

Raghuramaiah, M.

M. Raghuramaiah et al., “A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations,” Sadhana 26, 603–611 (2001).
[CrossRef]

Ross, I. N.

Salin, F.

Sarger, L.

L. Sarger and J. Oberle, How to measure the characteristics of laser pulses in Femtosecond Laser Pulses, C. Rulliere, ed., (Springer-Verlag, New York,2004).

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Trebino, R.

Umstadter, D.

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8, 1774–1785 (2001).
[CrossRef]

Walmsley, I. A.

Zuegel, J. D.

J. D. Zuegel, et al., “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

Appl. Opt. (1)

Exp. Astron. (1)

A. Hoffman, et al., “CMOS Detector Technology,” Exp. Astron. 19, 111–134 (2005)
[CrossRef]

Fusion Sci. Technol. (1)

J. D. Zuegel, et al., “Laser challenges for fast ignition,” Fusion Sci. Technol. 49, 453–482 (2006).

J. Phys. D: Appl. Phys. (1)

A. Brun et al., “Single-shot characterization of ultra-short light pulses,” J. Phys. D: Appl. Phys. 24, 1225–1233 (1991).
[CrossRef]

LLE Review (1)

O. Konoplev et al., “Ultrahigh dynamic range measurement of high-contrast pulse using second-order autocorrelator,” LLE Review 75, 159–170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html

Opt. Commun. (2)

P. F. Curley, et al., “High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems,” Opt. Commun. 120, 71–77 (1995).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Opt. Lett. (6)

Phys. Plasmas (1)

D. Umstadter, “Review of physics and applications of relativistic plasmas driven by ultra-intense lasers,” Phys. Plasmas 8, 1774–1785 (2001).
[CrossRef]

Plasma Phys. Controlled Fusion (1)

P. A. Norreys et al., “PW lasers: matter in extreme laser fields,” Plasma Phys. Controlled Fusion 46, 13–21 (2004)
[CrossRef]

Sadhana (1)

M. Raghuramaiah et al., “A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations,” Sadhana 26, 603–611 (2001).
[CrossRef]

Other (1)

L. Sarger and J. Oberle, How to measure the characteristics of laser pulses in Femtosecond Laser Pulses, C. Rulliere, ed., (Springer-Verlag, New York,2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Noise measurement from two independent 250 × 250 pixel areas of the CMOS chip (, where the second area plot has been offset) shows the possibility to increase the S/N ratio of the camera using an online background reference from a non-illuminated part of the chip. (b) Measurement of the noise dependence from the area size (the 1000 frames statistics): for single signal area (purple) and for signal area after a background subtraction of the 250 × 250 pixel reference area (green). Red line shows the theoretical limit in the case of purely random pixel-to- pixel noise.

Fig. 2.
Fig. 2.

Experimental setup for the (a) scanning autocorrelator and (b) single-shot autocorrelator: CL - cylindrical lens, BS - beam splitter, M - mirror, BBO - nonlinear crystal, I - iris, W - wedge, L - lens, F - filters (ND, BG39).

Fig. 3.
Fig. 3.

(a). Using a 1° uncoated wedge a signal replica with an intensity decrease of a factor of 0.0018 is created. (b) CMOS camera image (of the single-shot autocorrelator) showing the three areas used for the signal retrieval.

Fig. 4.
Fig. 4.

Autocorrelation signals of the scanning autocorrelator (averaged over 10 frames) for three different detection schemes: (green) the signal is retrieved from a single pixel, (blue) the signal is averaged over a 250 × 250 pixel area, (red) the full detection scheme is used.

Fig. 5.
Fig. 5.

Autocorrelation signal of the single-shot autocorrelator using the full detection scheme. The sharp edge on the right shows clearly a cut off caused by the limited crystal size.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ noise = σ pix + σ corr
S P = S S r S 0 S r 0 ,

Metrics