Abstract

We have developed a simple detection scheme that uses an 8-bit CMOS camera and spans over 60-dB dynamic range. By use of noise reduction techniques, the 8-bit CMOS camera yields a 40-dB dynamic-range signal, which is further increased by 20 dB by making a replica of the signal beam on another part of the detector chip. We have experimentally validated this scheme in a scanning and a single-shot autocorrelator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.D. Perry et al., "Petawatt laser pulses", Optics Letters 24, 160-162 (1999).
    [CrossRef]
  2. J. D. Zuegel et al., "Laser Challenges for Fast Ignition," Fusion Science and Technology 49, 453-482 (2006).
  3. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Commun. 56, 219-221 (1985).
    [CrossRef]
  4. D. Umstadter, "Review of physics and applications of relativistic plasmas driven by ultra-intense lasers," Phys. Plasmas 8, 1774-1785 (2001).
    [CrossRef]
  5. P. A. Norreys et al., "PW lasers: matter in extreme laser fields," Plasma Physics and Controlled Fusion 46, 13-21 (2004)
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultra-short optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  7. D. J. Kane and R. Trebino, "Single-shot measurement of the intensity and phase of an arbitrary ultra-short pulse by using frequency-resolved optical gating," Opt. Lett. 18, 823-825 (1993).
    [CrossRef] [PubMed]
  8. F. Salin et al., "Single-shot measurement of a 52-fs pulse," Appl. Opt. 26, 4528-4531 (1987).
    [CrossRef] [PubMed]
  9. A. Brun et al., "Single-shot characterization of ultra-short light pulses," J. Phys. D: Appl. Phys. 24, 1225-1233 (1991).
    [CrossRef]
  10. M. Raghuramaiah et al., "A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations," Sadhana 26, 603-611 (2001).
    [CrossRef]
  11. N. Forget et al., "Pump-noise transfer in optical parametric chirped-pulse amplification," Opt. Lett. 30, 2921-2923 (2005).
    [CrossRef]
  12. O. Konoplev et al., "Ultrahigh Dynamic Range Measurement of High-Contrast Pulse using Second-Order Autocorrelator," LLE Review 75, 159-170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html">
  13. A. Braun et al., "Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement," Opt. Lett. 20, 1889-1891 (1995).
    [CrossRef] [PubMed]
  14. P. F. Curley et al., "High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems," Opt. Commun. 120, 71-77 (1995).
    [CrossRef]
  15. E. J. Divall and I. N. Ross, "High dynamic range contrast measurements by use of an optical parametric amplifier correlator," Opt. Lett. 29, 2273-2275 (2004).
    [CrossRef] [PubMed]
  16. A. Hoffman et al., "CMOS Detector Technology," Exp. Astron. 19,111-134 (2005)
    [CrossRef]
  17. L. Sarger and J. Oberle, "How to Measure the Characteristics of Laser Pulses," in Femtosecond Laser Pulses, C. Rulliere ed. (Springer-Verlag, New York, 2004)

2006

J. D. Zuegel et al., "Laser Challenges for Fast Ignition," Fusion Science and Technology 49, 453-482 (2006).

2005

2004

2001

D. Umstadter, "Review of physics and applications of relativistic plasmas driven by ultra-intense lasers," Phys. Plasmas 8, 1774-1785 (2001).
[CrossRef]

M. Raghuramaiah et al., "A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations," Sadhana 26, 603-611 (2001).
[CrossRef]

1999

M.D. Perry et al., "Petawatt laser pulses", Optics Letters 24, 160-162 (1999).
[CrossRef]

1998

1995

A. Braun et al., "Characterization of short-pulse oscillators by means of a high-dynamic-range autocorrelation measurement," Opt. Lett. 20, 1889-1891 (1995).
[CrossRef] [PubMed]

P. F. Curley et al., "High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems," Opt. Commun. 120, 71-77 (1995).
[CrossRef]

1993

1991

A. Brun et al., "Single-shot characterization of ultra-short light pulses," J. Phys. D: Appl. Phys. 24, 1225-1233 (1991).
[CrossRef]

1987

1985

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Commun. 56, 219-221 (1985).
[CrossRef]

Braun, A.

Brun, A.

A. Brun et al., "Single-shot characterization of ultra-short light pulses," J. Phys. D: Appl. Phys. 24, 1225-1233 (1991).
[CrossRef]

Curley, P. F.

P. F. Curley et al., "High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems," Opt. Commun. 120, 71-77 (1995).
[CrossRef]

Divall, E. J.

Forget, N.

Hoffman, A.

A. Hoffman et al., "CMOS Detector Technology," Exp. Astron. 19,111-134 (2005)
[CrossRef]

Iaconis, C.

Kane, D. J.

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Commun. 56, 219-221 (1985).
[CrossRef]

Norreys, P. A.

P. A. Norreys et al., "PW lasers: matter in extreme laser fields," Plasma Physics and Controlled Fusion 46, 13-21 (2004)
[CrossRef]

Perry, M.D.

M.D. Perry et al., "Petawatt laser pulses", Optics Letters 24, 160-162 (1999).
[CrossRef]

Raghuramaiah, M.

M. Raghuramaiah et al., "A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations," Sadhana 26, 603-611 (2001).
[CrossRef]

Ross, I. N.

Salin, F.

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Commun. 56, 219-221 (1985).
[CrossRef]

Trebino, R.

Umstadter, D.

D. Umstadter, "Review of physics and applications of relativistic plasmas driven by ultra-intense lasers," Phys. Plasmas 8, 1774-1785 (2001).
[CrossRef]

Walmsley, I. A.

Zuegel, J. D.

J. D. Zuegel et al., "Laser Challenges for Fast Ignition," Fusion Science and Technology 49, 453-482 (2006).

Appl. Opt.

Exp. Astron.

A. Hoffman et al., "CMOS Detector Technology," Exp. Astron. 19,111-134 (2005)
[CrossRef]

Fusion Science and Technology

J. D. Zuegel et al., "Laser Challenges for Fast Ignition," Fusion Science and Technology 49, 453-482 (2006).

J. Phys. D: Appl. Phys.

A. Brun et al., "Single-shot characterization of ultra-short light pulses," J. Phys. D: Appl. Phys. 24, 1225-1233 (1991).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Commun. 56, 219-221 (1985).
[CrossRef]

P. F. Curley et al., "High dynamic range autocorrelation studies of a femtosecond Ti:sapphire oscillator and its relevance to the optimisation of chirped pulse amplification systems," Opt. Commun. 120, 71-77 (1995).
[CrossRef]

Opt. Lett.

Optics Letters

M.D. Perry et al., "Petawatt laser pulses", Optics Letters 24, 160-162 (1999).
[CrossRef]

Phys. Plasmas

D. Umstadter, "Review of physics and applications of relativistic plasmas driven by ultra-intense lasers," Phys. Plasmas 8, 1774-1785 (2001).
[CrossRef]

Plasma Phys. Controlled Fusion

P. A. Norreys et al., "PW lasers: matter in extreme laser fields," Plasma Physics and Controlled Fusion 46, 13-21 (2004)
[CrossRef]

Sadhana

M. Raghuramaiah et al., "A second-order autocorrelator for single-shot measurement of femtosecond laser pulse durations," Sadhana 26, 603-611 (2001).
[CrossRef]

Other

O. Konoplev et al., "Ultrahigh Dynamic Range Measurement of High-Contrast Pulse using Second-Order Autocorrelator," LLE Review 75, 159-170 (1998), http://www.lle.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-75.html">

L. Sarger and J. Oberle, "How to Measure the Characteristics of Laser Pulses," in Femtosecond Laser Pulses, C. Rulliere ed. (Springer-Verlag, New York, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Noise measurement from two independent 250 × 250 pixel areas of the CMOS chip (, where the second area plot has been offset) shows the possibility to increase the S/N ratio of the camera using an online background reference from a non-illuminated part of the chip. (b) Measurement of the noise dependence from the area size (the 1000 frames statistics): for single signal area (purple) and for signal area after a background subtraction of the 250 × 250 pixel reference area (green). Red line shows the theoretical limit in the case of purely random pixel-to- pixel noise.

Fig. 2.
Fig. 2.

Experimental setup for the (a) scanning autocorrelator and (b) single-shot autocorrelator: CL - cylindrical lens, BS - beam splitter, M - mirror, BBO - nonlinear crystal, I - iris, W - wedge, L - lens, F - filters (ND, BG39).

Fig. 3.
Fig. 3.

(a). Using a 1° uncoated wedge a signal replica with an intensity decrease of a factor of 0.0018 is created. (b) CMOS camera image (of the single-shot autocorrelator) showing the three areas used for the signal retrieval.

Fig. 4.
Fig. 4.

Autocorrelation signals of the scanning autocorrelator (averaged over 10 frames) for three different detection schemes: (green) the signal is retrieved from a single pixel, (blue) the signal is averaged over a 250 × 250 pixel area, (red) the full detection scheme is used.

Fig. 5.
Fig. 5.

Autocorrelation signal of the single-shot autocorrelator using the full detection scheme. The sharp edge on the right shows clearly a cut off caused by the limited crystal size.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ noise = σ pix + σ corr
S P = S S r S 0 S r 0 ,

Metrics