Abstract

We present simple scaling rules to optimize the design of 2R optical regenerators relying on Self-Phase Modulation in the normal dispersion regime and associated offset spectral filtering. A global design map is derived which relates both the physical parameters of the regenerator and the properties of the incoming signal to the regeneration performance. The operational conditions for optimum noise rejection are identified using this map and a detailed analysis of the system behavior under these conditions presented. Finally, we demonstrate application of the general design map to the design of a regenerator for a specific 160 Gb/s system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
    [CrossRef]
  2. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. European Conference on Optical Communications (ECOC’98) (1998), p. 475.
  3. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.
  4. M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, “Optical 40-Gb/s 3R Regenerator With a Combination of the SPM and XAM Effects for All-Optical Networks,” J. Lightwave Technol. 24, 1142–1148 (2006).
    [CrossRef]
  5. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
    [CrossRef]
  6. Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
    [CrossRef]
  7. T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
    [CrossRef]
  8. M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
    [CrossRef]
  9. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear fiber,” Opt. Lett. 26, 1233–1235 (2001).
    [CrossRef]
  10. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
    [CrossRef]
  11. F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
    [CrossRef] [PubMed]
  12. X. Liu, C. Xu, and W. H. Knox, “Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers,” in Proc. Conference on Lasers and Electro-Optics (CLEO’02)(2002), pp. 612–613.
  13. A. G. Striegler and B. Schmauss, “Analysis and Optimization of SPM-Based 2R Signal Regeneration at 40 Gb/s,” J. Lightwave Technol. 24, 2835–2843 (2006).
    [CrossRef]
  14. M. Matsumoto, “Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers,” J. Lightwave Technol. 22, 1472 (2004).
    [CrossRef]
  15. P. Johannisson and M. Karlsson, “Characterization of a self-phase-Modulation-based all-optical regeneration system,” Photon. Technol. Lett. 17, 2667 (2005).
    [CrossRef]
  16. L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.
  17. M. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
    [CrossRef]
  18. R. Hainberger, T. Hoshida, S. Watanabe, and H. Onaka, “BER estimation in optical fiber transmission systems employing all-optical 2R regenerators,” J. Lightwave Technol. 22, 746 (2004).
    [CrossRef]
  19. F. Ohman and J. Mork, “Modeling of Bit Error Rate in Cascaded 2R Regenerators,” J. Lightwave Technol. 24, 1057 (2006).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001).
    [PubMed]
  21. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9, 1358- (1992).
    [CrossRef]
  22. S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication Conference (OFC) 2000(2000), Vol. 3, pp. 2–4.
  23. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 15, 457 (1985).
    [CrossRef]
  24. I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
    [CrossRef]
  25. N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
    [CrossRef]
  26. T. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).
    [CrossRef] [PubMed]
  27. J. E. Rothenberg, “Colliding visible picosecond pulses in optical fibers,” Opt. Lett. 15, 443–445 (1990).
    [CrossRef] [PubMed]
  28. M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
    [CrossRef]
  29. S. Pitois, J. Fatome, and G. Millot, “Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal,” Opt. Lett. 27, 1729–1731 (2002).
    [CrossRef]
  30. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

2006 (8)

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
[CrossRef]

T. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Opt. Express 14, 1737–1747 (2006).
[CrossRef] [PubMed]

F. Ohman and J. Mork, “Modeling of Bit Error Rate in Cascaded 2R Regenerators,” J. Lightwave Technol. 24, 1057 (2006).
[CrossRef]

M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, “Optical 40-Gb/s 3R Regenerator With a Combination of the SPM and XAM Effects for All-Optical Networks,” J. Lightwave Technol. 24, 1142–1148 (2006).
[CrossRef]

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
[CrossRef] [PubMed]

A. G. Striegler and B. Schmauss, “Analysis and Optimization of SPM-Based 2R Signal Regeneration at 40 Gb/s,” J. Lightwave Technol. 24, 2835–2843 (2006).
[CrossRef]

2005 (2)

P. Johannisson and M. Karlsson, “Characterization of a self-phase-Modulation-based all-optical regeneration system,” Photon. Technol. Lett. 17, 2667 (2005).
[CrossRef]

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

2004 (4)

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
[CrossRef]

R. Hainberger, T. Hoshida, S. Watanabe, and H. Onaka, “BER estimation in optical fiber transmission systems employing all-optical 2R regenerators,” J. Lightwave Technol. 22, 746 (2004).
[CrossRef]

M. Matsumoto, “Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers,” J. Lightwave Technol. 22, 1472 (2004).
[CrossRef]

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

2003 (2)

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
[CrossRef]

2002 (1)

2001 (1)

1999 (2)

M. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
[CrossRef]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
[CrossRef]

1992 (1)

1990 (1)

1985 (1)

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 15, 457 (1985).
[CrossRef]

Agata, A.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001).
[PubMed]

Akiba, S.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

Anderson, D.

Asimakis, S.

Belardi, W.

Boivin, L.

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication Conference (OFC) 2000(2000), Vol. 3, pp. 2–4.

Bramerie, L.

Chartier, T.

Daikoku, M.

Desaix, M.

Dreyer, K.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Edagawa, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
[CrossRef]

Eggleton, B. J.

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
[CrossRef]

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

Essiambre, R.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Essiambre, R. J.

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
[CrossRef]

Fatome, J.

Feder, K.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Finot, C.

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.

Fu, L. B.

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Furusawa, K.

Gay, M.

Hainberger, R.

Han, Y. G.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Headley, C.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
[CrossRef]

Her, T.-H.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Hoshida, T.

Joergensen, C.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Johannisson, P.

P. Johannisson and M. Karlsson, “Characterization of a self-phase-Modulation-based all-optical regeneration system,” Photon. Technol. Lett. 17, 2667 (2005).
[CrossRef]

Johnson, A. M.

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 15, 457 (1985).
[CrossRef]

Joindot, M.

Karlsson, M.

P. Johannisson and M. Karlsson, “Characterization of a self-phase-Modulation-based all-optical regeneration system,” Photon. Technol. Lett. 17, 2667 (2005).
[CrossRef]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Knox, W. H.

X. Liu, C. Xu, and W. H. Knox, “Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers,” in Proc. Conference on Lasers and Electro-Optics (CLEO’02)(2002), pp. 612–613.

Koizumi, F.

Kubota, H.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear fiber,” Opt. Lett. 26, 1233–1235 (2001).
[CrossRef]

Lee, S. B.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Leuthold, J.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Lisak, M.

Littler, I. C. M.

I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
[CrossRef]

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

Liu, X.

X. Liu, C. Xu, and W. H. Knox, “Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers,” in Proc. Conference on Lasers and Electro-Optics (CLEO’02)(2002), pp. 612–613.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. European Conference on Optical Communications (ECOC’98) (1998), p. 475.

Matsumoto, M.

McKerracher, R. W.

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

Mikkelsen, B.

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
[CrossRef]

Millot, G.

Monro, T. M.

Morita, I.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
[CrossRef]

Mork, J.

Moss, D. J.

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Mukasa, K.

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Nakazawa, M.

Nguyen, T.

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

Ohman, F.

Onaka, H.

Otani, T.

Parmigiani, F.

Petropoulos, P.

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
[CrossRef] [PubMed]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear fiber,” Opt. Lett. 26, 1233–1235 (2001).
[CrossRef]

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.

Pitois, S.

Provost, L.

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.

Quiroga-Teixeiro, M. L.

Raybon, G.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
[CrossRef]

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Richardson, D. J.

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
[CrossRef] [PubMed]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear fiber,” Opt. Lett. 26, 1233–1235 (2001).
[CrossRef]

L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

Rochette, M.

I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
[CrossRef]

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

Rothenberg, J. E.

Schmauss, B.

Simon, J.-C.

Steinvurzel, P.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Stolen, R. H.

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 15, 457 (1985).
[CrossRef]

Striegler, A. G.

Su, Y.

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos, and D. J. Richardson, “2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber,” Opt. Express 14, 5038–5044 (2006).
[CrossRef] [PubMed]

Taccheo, S.

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication Conference (OFC) 2000(2000), Vol. 3, pp. 2–4.

Ta'Eed, V.

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

Tamura, K.

Tanaka, H.

Tomlinson, W. J.

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 15, 457 (1985).
[CrossRef]

Tsuritani, T.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

Watanabe, S.

Xu, C.

X. Liu, C. Xu, and W. H. Knox, “Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers,” in Proc. Conference on Lasers and Electro-Optics (CLEO’02)(2002), pp. 612–613.

Yoshikane, N.

M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka, “Optical 40-Gb/s 3R Regenerator With a Combination of the SPM and XAM Effects for All-Optical Networks,” J. Lightwave Technol. 24, 1142–1148 (2006).
[CrossRef]

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
[CrossRef]

Electron. Lett. (1)

R. J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35, 1576–1578 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, “Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDM transmission systems,” IEEE J. Sel. Top. Quantum Electron. 10, 412–420 (2004).
[CrossRef]

M. Rochette, L. B. Fu, V. Ta'Eed, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: An All-Optical Solution for BER Improvement,” IEEE J. Sel. Top. Quantum Electron. 12, 736–744 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output Performance Investigation of Self-Phase-Modulation-Based 2R Regenerator Using Bismuth Oxide Nonlinear Fiber,” IEEE Photon. Technol. Lett. 18, 1296–1298 (2006).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. C. M. Littler, M. Rochette, and B. J. Eggleton, “Impact of chromatic dispersion and group delay ripple on self-phase modulation based optical regenerators,” Opt. Commun. 265, 95–99 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Photon. Technol. Lett. (5)

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” Photon. Technol. Lett. 15, 111–113 (2003).
[CrossRef]

M. Rochette, I. C. M. Littler, R. W. McKerracher, and B. J. Eggleton, “A dispersionless and bandwidth-adjustable FBG filter for reconfigurable 2R-regeneration,” Photon. Technol. Lett. 17, 1680–1682 (2005).
[CrossRef]

P. Johannisson and M. Karlsson, “Characterization of a self-phase-Modulation-based all-optical regeneration system,” Photon. Technol. Lett. 17, 2667 (2005).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photon. Technol. Lett. 15, 350 (2003).
[CrossRef]

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” Photon. Technol. Lett. 16, 200–202 (2004).
[CrossRef]

Other (7)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proc. European Conference on Optical Communications (ECOC’98) (1998), p. 475.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T.-H. Her, C. Joergensen, P. Steinvurzel, K. Dreyer, and K. Feder, “40 Gb/s pseudo linear transmission over one million kilometers,” in Proc. Optical Fiber Communications (OFC’02) (Anaheim CA, 2002), p. 42.

L. Provost, C. Finot, P. Petropoulos, and D. J. Richardson, “Design Scaling Laws for Self-Phase Modulation-based 2R-Regenerators,” in Proc. European Conference on Optical Communications (ECOC’06) (Cannes, 2006), p. We 4.3.2.

S. Taccheo and L. Boivin, “Investigation and design rules of supercontinuum sources for WDM applications,” in Optical Fiber Communication Conference (OFC) 2000(2000), Vol. 3, pp. 2–4.

X. Liu, C. Xu, and W. H. Knox, “Characteristics of all-optical 2R regenerator based on self-phase modulation in high-nonlinear fibers,” in Proc. Conference on Lasers and Electro-Optics (CLEO’02)(2002), pp. 612–613.

L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Generalisation and experimental validation of design rules for Self-Phase Modulation-based 2R-Regenerators,” in Proc. Optical Fiber Communications (OFC’07)(Anaheim CA, 2007), p. OThB6.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition (Academic Press, 2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a typical optical regenerator based on Self-Phase Modulation.

Fig. 2.
Fig. 2.

Illustration of the three possible TF types for the SPM-based regenerator: nonmonotonic evolution (A), locally flat evolution (B), or monotonous variation (C).

Fig. 3.
Fig. 3.

Definition of the parameters used to parameterize the power TF of the regenerator. Left: Definition of the input (ERin) and output (ERout) extinction ratios. Right: An example showing these parameters on a model TF.

Fig. 4.
Fig. 4.

Normalized map for input unchirped Gaussian pulses linking the regenerator parameters to the regeneration performance: Bold plain lines correspond to ρ contours. Orange plain lines correspond to ERout contours (in dB), and black lines correspond to N1 in contours.

Fig. 5.
Fig. 5.

(a): TBP of the regenerated pulse as a function of N1 in. Red dashed line represents the value for transform-limited Gaussian pulses. (b): Variation of the normalized temporal pulse FWHM as a function of N1 in. (c): Normalized output pulse chirp for various N1 in values. As a reference, the initial Gaussian pulses are also shown. (d): Variation of the timing jitter induced by the regenerator over a ± 7.5% input peak power range as a function of N1 in. Dashed lines in (a) and (b) show the performance that can be achieved when chirp compensation is considered.

Fig. 6.
Fig. 6.

Normalized intensity profiles: (a) before linear chirp compensation, and (b) and after linear chirp compensation. As a reference, an initial Gaussian pulse is also shown (dashed lines).

Fig. 7.
Fig. 7.

(a). TFs for an input pulse width variation between -20% and +20% relative to T0. (b): TFs for linearly chirped input pulses with either positive (C>0) or negative (C<0) linear chirp. The axes correspond to normalized pulse energies with respect to energies E1,opt in and E1,opt out of the unchirped nominal case for N1 in=10.

Fig. 8.
Fig. 8.

Output extinction ratio ERout improvement (a) and energy yield (b) as a function of N1 in when operating along the optimal regime ‘B’.

Fig. 9.
Fig. 9.

(a). Temporal evolution of the input pulse for various N1 in values; the bit slot occupation for 20, 25, and 33% duty cycle is also shown. (b). Variation of the peak power of three propagating pulses relative to the single pulse case as a function of N1 in, for duty-cycle values of 20%, 25% and 33%.

Fig. 10.
Fig. 10.

Peak power distributions and temporal pulse shape at the input of the regenerator (top) and at the output (bottom) for a data signal at 160 Gb/s.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u ( z , t ) = N 2 U ( z , t ) ; ξ = z L D ; τ = T T 0 = t β 1 z T 0
L D = T 0 2 β 2 ; L NL = 1 γ P p ; N 2 = L D L NL
i u ( ξ , τ ) ξ sgn ( β 2 ) 2 2 u ( ξ , τ ) τ 2 + u ( ξ , τ ) 2 u ( ξ , τ ) = 0
L opt , B L D = K 0 N 1 in
ΔF F 0 0.71 N 1 in 2.13
T m 1 , δ = T m 1 [ ( 1 + δ ) P 1 in ] T m 1 [ ( 1 δ ) P 1 in ]
T m 1 [ P 1 in ] = t I ( L , t ) dt I ( L , t ) dt

Metrics