Abstract

We demonstrate a novel scheme for 2R burst mode reception capable of operating error-free with 40 Gb/s variable length, asynchronous optical data packets that exhibit up to 9 dB packet-to-packet power variation. It consists of a single, hybrid integrated, SOA-based Mach-Zehnder Interferometer (SOA-MZI) with unequal splitting ratio couplers, configured to operate as a self-switch. We analyze theoretically the power equalization properties of unequal splitting ratio SOA-MZI switches and show good agreement between theory and experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Packet-level synchronization scheme for optical packet switched network nodes

D. Petrantonakis, D. Apostolopoulos, O. Zouraraki, D. Tsiokos, P. Bakopoulos, and H. Avramopoulos
Opt. Express 14(26) 12665-12669 (2006)

40 Gb/s all-optical packet clock recovery with ultrafast lock-in time and low inter-packet guardbands

E. Kehayas, L. Stampoulidis, H. Avramopoulos, Y. Liu, E. Tangdiongga, and H. J. S. Dorren
Opt. Express 13(2) 475-480 (2005)

Modeling of Burst Mode 2R Optical Regenerator Cascades for Long-Haul Optical Networks

P. N. Desai, A. J. Phillips, and S. Sujecki
J. Opt. Commun. Netw. 4(4) 304-313 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine 40, S66–S73, (2002)
    [Crossref]
  2. C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
    [Crossref]
  3. An V. Trao, C. Chae, and R. S. Tucker, “Optical Packet Power EquaIization with Large Dynamic Range using Controlled Gain-Clamped SOA,” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OME46
  4. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
    [Crossref]
  5. J. Leuthold and M. Kauer, “Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters,” IEE Electron. Lett. 38, 1567–1569, (2002)
    [Crossref]
  6. D. Wolfson et al., “Experimental Investigation at 10 Gb/s of the Noise Suppression Capabilities in a Pass-Through Configuration in SOA-Based Interferometric Structures,” IEEE Photon. Technol. Lett. 12, 837–839 (2000).
    [Crossref]
  7. R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)
  8. http://mufins.cti.gr/
  9. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
    [Crossref]
  10. N. Pleros et al. “Recipe for amplitude modulation reduction in SOA-based interferometric switches,” IEEE J. Lightwave Technol. 22, 12 , 2834–2842,(2004)
    [Crossref]
  11. M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

2005 (2)

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

2004 (1)

N. Pleros et al. “Recipe for amplitude modulation reduction in SOA-based interferometric switches,” IEEE J. Lightwave Technol. 22, 12 , 2834–2842,(2004)
[Crossref]

2002 (2)

J. Leuthold and M. Kauer, “Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters,” IEE Electron. Lett. 38, 1567–1569, (2002)
[Crossref]

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine 40, S66–S73, (2002)
[Crossref]

2000 (1)

D. Wolfson et al., “Experimental Investigation at 10 Gb/s of the Noise Suppression Capabilities in a Pass-Through Configuration in SOA-Based Interferometric Structures,” IEEE Photon. Technol. Lett. 12, 837–839 (2000).
[Crossref]

1997 (1)

C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
[Crossref]

1995 (1)

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
[Crossref]

Akatsu, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

Calabretta, N.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

Chae, C.

An V. Trao, C. Chae, and R. S. Tucker, “Optical Packet Power EquaIization with Large Dynamic Range using Controlled Gain-Clamped SOA,” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OME46

Chen, L-K.

C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
[Crossref]

Cheung, K.-W.

C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
[Crossref]

Ciaramella, E.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

Contestabile, G.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

Eiselt, M.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
[Crossref]

Ito, T.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

Kauer, M.

J. Leuthold and M. Kauer, “Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters,” IEE Electron. Lett. 38, 1567–1569, (2002)
[Crossref]

Kramer, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine 40, S66–S73, (2002)
[Crossref]

Leuthold, J.

J. Leuthold and M. Kauer, “Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters,” IEE Electron. Lett. 38, 1567–1569, (2002)
[Crossref]

Mørk, J.

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Nielsen, M. L.

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Ohki, A.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

Pesavento, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine 40, S66–S73, (2002)
[Crossref]

Pieper, W.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
[Crossref]

Pleros, N.

N. Pleros et al. “Recipe for amplitude modulation reduction in SOA-based interferometric switches,” IEEE J. Lightwave Technol. 22, 12 , 2834–2842,(2004)
[Crossref]

Proietti, R.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

Sakaguchi, J.

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Sato, R.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

Shibata, Y.

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

Su, C.

C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
[Crossref]

Suzuki, R.

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Trao, An V.

An V. Trao, C. Chae, and R. S. Tucker, “Optical Packet Power EquaIization with Large Dynamic Range using Controlled Gain-Clamped SOA,” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OME46

Tucker, R. S.

An V. Trao, C. Chae, and R. S. Tucker, “Optical Packet Power EquaIization with Large Dynamic Range using Controlled Gain-Clamped SOA,” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OME46

Ueno, Y.

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Weber, H. G.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
[Crossref]

Wolfson, D.

D. Wolfson et al., “Experimental Investigation at 10 Gb/s of the Noise Suppression Capabilities in a Pass-Through Configuration in SOA-Based Interferometric Structures,” IEEE Photon. Technol. Lett. 12, 837–839 (2000).
[Crossref]

IEE Electron. Lett. (1)

J. Leuthold and M. Kauer, “Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters,” IEE Electron. Lett. 38, 1567–1569, (2002)
[Crossref]

IEEE Communications Magazine (1)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine 40, S66–S73, (2002)
[Crossref]

IEEE J. Lightwave Technol. (3)

C. Su, L-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver and its applications in optical multiaccess networks,” IEEE J. Lightwave Technol. 15, 590–606, (1997)
[Crossref]

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” IEEE J. Lightwave Technol. 13, pp. 2099–2112, Oct. 1995.
[Crossref]

N. Pleros et al. “Recipe for amplitude modulation reduction in SOA-based interferometric switches,” IEEE J. Lightwave Technol. 22, 12 , 2834–2842,(2004)
[Crossref]

IEEE J. Lightwave Tecnol. (1)

R. Sato, T. Ito, Y. Shibata, A. Ohki, and Y. Akatsu, “40 Gb/s Burst-Mode Optical 2R Regenerator,”, IEEE J. Lightwave Tecnol. 17, 2194–2196, (2005)

IEEE Photon. Technol. Lett. (2)

D. Wolfson et al., “Experimental Investigation at 10 Gb/s of the Noise Suppression Capabilities in a Pass-Through Configuration in SOA-Based Interferometric Structures,” IEEE Photon. Technol. Lett. 12, 837–839 (2000).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella,” Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers,” IEEE Photon. Technol. Lett. 17, 2523–2526 (2005).
[Crossref]

Other (3)

An V. Trao, C. Chae, and R. S. Tucker, “Optical Packet Power EquaIization with Large Dynamic Range using Controlled Gain-Clamped SOA,” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OME46

http://mufins.cti.gr/

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, “Reduction of nonlinear patterning effects in SOAbased all-optical switches using optical filtering” in Optical Fiber Communication Technical Digest (Optical Society of America, 2005) paper OThE7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of unequal splitting ratio Mach-Zehnder Interferometer

Fig. 2.
Fig. 2.

Theoretically obtained graphs for mout vs Uin/Usat for coupling ratios: (a)50/50 (b) 70/30 (c) 90/10

Fig. 3.
Fig. 3.

Experimental setup

Fig. 4.
Fig. 4.

Input (top row) and output (bottom row) pulse traces (timescale:1ns) and eye diagrams (timescale:10ps) for input packets with (a) 2 power levels and (b) 4 power levels

Fig. 5.
Fig. 5.

BER curves for two demuxed channels for : 2P. level input, 4P.level input, 2P level output, 4P. level output

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P S ( t ) = { a 2 G 1 ( t ) + ( 1 a ) 2 G 2 ( t ) 2 ( 1 a ) a G 1 ( t ) G 2 ( t ) cos ( α n 2 ℓn G 2 ( t ) G 1 ( t ) ) } P in
U in k ( t ) = P 0 ( 1 + m in cos ( Ω k T ) ) t a ( t ´ ) dt ´
m o p m in = 1 + U in U sat · { ( 1 G 1 | m = 0 ) [ a 3 + a 2 ( 1 a ) exp ( π α n ) ] + [ 1 G 1 | m = 0 exp ( 2 π α n ) ] [ ( 1 a ) 3 exp ( 2 π α n ) + a ( 1 a ) 2 exp ( π α n ) ] } a 2 + ( 1 a ) 2 exp ( 2 π α n ) + 2 a ( 1 a ) exp ( π α n )

Metrics