B. J. Ainslie and C. R. Day, “A review of single-mode fibers with
modified dispersion characteristics,” J.
Lightwave. Technol. 4, 967–979 (1986).
[Crossref]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. S. J. Russell, “Designing a photonic crystal fibre
with flattend chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[Crossref]
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human
retinal imaging by Fourier domain optical coherence
tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial
coherence interferometry: Implications for intraocular
ranging,” J. Biomed. Opt 4, 144–151 (1999).
[Crossref]
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency domain
imaging,” Opt. Express 11, 2953–2963 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]
[PubMed]
J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and
phase-resolved digital data processing in optical coherence
tomography,” Appl. Opt. 40, 5787–5790 (2001).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
B. J. Ainslie and C. R. Day, “A review of single-mode fibers with
modified dispersion characteristics,” J.
Lightwave. Technol. 4, 967–979 (1986).
[Crossref]
C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial
coherence interferometry: Implications for intraocular
ranging,” J. Biomed. Opt 4, 144–151 (1999).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances
by back-scattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human
retinal imaging by Fourier domain optical coherence
tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial
coherence interferometry: Implications for intraocular
ranging,” J. Biomed. Opt 4, 144–151 (1999).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances
by back-scattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]
A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. S. J. Russell, “Designing a photonic crystal fibre
with flattend chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
G. Haüsler and M. W. Lindner, “”Coherence
radar” and ”Specral radar” - New tools for
dermatological diagnosis,” J. Biomed.
Opt. 3, 21–31 (1998).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial
coherence interferometry: Implications for intraocular
ranging,” J. Biomed. Opt 4, 144–151 (1999).
[Crossref]
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances
by back-scattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, “Characteristics of super structure
grating (SSG) DBR lasers under broad range wavelength
tuning,” IEEE Photon. Technol. Lett. 5, 611–613 (1993).
[Crossref]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances
by back-scattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]
M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion compensating fibre with a
high figure of merit of 250ps/nm/dB,” Electron. Lett. 30, 161–163 (1994).
[Crossref]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, “Characteristics of super structure
grating (SSG) DBR lasers under broad range wavelength
tuning,” IEEE Photon. Technol. Lett. 5, 611–613 (1993).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
N. Kashima, Passive Optical Components for Optical Fiber
Transmission (Artech House, Inc., Norwood, 1995).
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human
retinal imaging by Fourier domain optical coherence
tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion compensating fibre with a
high figure of merit of 250ps/nm/dB,” Electron. Lett. 30, 161–163 (1994).
[Crossref]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human
retinal imaging by Fourier domain optical coherence
tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
G. Haüsler and M. W. Lindner, “”Coherence
radar” and ”Specral radar” - New tools for
dermatological diagnosis,” J. Biomed.
Opt. 3, 21–31 (1998).
[Crossref]
A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. S. J. Russell, “Designing a photonic crystal fibre
with flattend chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[Crossref]
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. S. J. Russell, “Designing a photonic crystal fibre
with flattend chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
H. Murata, Handbook of optical fibers and cables (Marcel Dekker, Inc., New York, 1988).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion compensating fibre with a
high figure of merit of 250ps/nm/dB,” Electron. Lett. 30, 161–163 (1994).
[Crossref]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed
and resolution of OFDR-OCT using multiple SSG-DBR lasers
simultaneously,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64292E (2007).
K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, California, 2000).
M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion compensating fibre with a
high figure of merit of 250ps/nm/dB,” Electron. Lett. 30, 161–163 (1994).
[Crossref]
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical
coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
A. Ferrando, E. S. J. J. Miret, J. A. Monsoriu, M. V. Andrés, and P. S. J. Russell, “Designing a photonic crystal fibre
with flattend chromatic dispersion,” Electron. Lett. 35, 325–327 (1999).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion compensating fibre with a
high figure of merit of 250ps/nm/dB,” Electron. Lett. 30, 161–163 (1994).
[Crossref]
D. Choi, H. Hiro-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Numerical compensation of dispersion
mismatch in discretely swept optical-frequency-domain reflectometry optical
coherence tomography,” Jpn. J. Appl.
Phys. 45, 6022–6027 (2006).
[Crossref]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain
reflectometry with a rapid wavelength-scanning superstructure-grating
distributed Bragg reflector laser,” Appl.
Opt. 44, 808–816 (2005).
[Crossref]
[PubMed]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, “Characteristics of super structure
grating (SSG) DBR lasers under broad range wavelength
tuning,” IEEE Photon. Technol. Lett. 5, 611–613 (1993).
[Crossref]
J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic
crystal fiber,” IEEE Photon. Technol.
Lett. 12, 807–809 (2000).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed,
Fourier domain optical coherence tomography and methods for dispersion
compensation,” Opt. Express 12, 2404–2422 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]
[PubMed]
M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human
retinal imaging by Fourier domain optical coherence
tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]
[PubMed]
H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in
super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[Crossref]
F. Kano, H. Ishii, Y. Tohmori, and Y. Yoshikuni, “Characteristics of super structure
grating (SSG) DBR lasers under broad range wavelength
tuning,” IEEE Photon. Technol. Lett. 5, 611–613 (1993).
[Crossref]
K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency
domain imaging toward high-resolution, high-speed,
high-sensitivity,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchineds., vol. 6429 of Proc. SPIE, p. 64291G (2007).
D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an
SSG-DBR laser,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Joseph, A. Izatt, and J. G. Fujimotoeds., vol. 5690 of Proc. SPIE, pp. 101–113 (2005).